|
- *> \brief \b DRQT02
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DRQT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
- * RWORK, RESULT )
- *
- * .. Scalar Arguments ..
- * INTEGER K, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
- * $ R( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
- * $ WORK( LWORK )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DRQT02 tests DORGRQ, which generates an m-by-n matrix Q with
- *> orthonornmal rows that is defined as the product of k elementary
- *> reflectors.
- *>
- *> Given the RQ factorization of an m-by-n matrix A, DRQT02 generates
- *> the orthogonal matrix Q defined by the factorization of the last k
- *> rows of A; it compares R(m-k+1:m,n-m+1:n) with
- *> A(m-k+1:m,1:n)*Q(n-m+1:n,1:n)', and checks that the rows of Q are
- *> orthonormal.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix Q to be generated. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix Q to be generated.
- *> N >= M >= 0.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The number of elementary reflectors whose product defines the
- *> matrix Q. M >= K >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> The m-by-n matrix A which was factorized by DRQT01.
- *> \endverbatim
- *>
- *> \param[in] AF
- *> \verbatim
- *> AF is DOUBLE PRECISION array, dimension (LDA,N)
- *> Details of the RQ factorization of A, as returned by DGERQF.
- *> See DGERQF for further details.
- *> \endverbatim
- *>
- *> \param[out] Q
- *> \verbatim
- *> Q is DOUBLE PRECISION array, dimension (LDA,N)
- *> \endverbatim
- *>
- *> \param[out] R
- *> \verbatim
- *> R is DOUBLE PRECISION array, dimension (LDA,M)
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the arrays A, AF, Q and L. LDA >= N.
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is DOUBLE PRECISION array, dimension (M)
- *> The scalar factors of the elementary reflectors corresponding
- *> to the RQ factorization in AF.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (M)
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is DOUBLE PRECISION array, dimension (2)
- *> The test ratios:
- *> RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS )
- *> RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup double_lin
- *
- * =====================================================================
- SUBROUTINE DRQT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
- $ RWORK, RESULT )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- INTEGER K, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
- $ R( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
- $ WORK( LWORK )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- DOUBLE PRECISION ROGUE
- PARAMETER ( ROGUE = -1.0D+10 )
- * ..
- * .. Local Scalars ..
- INTEGER INFO
- DOUBLE PRECISION ANORM, EPS, RESID
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
- EXTERNAL DLAMCH, DLANGE, DLANSY
- * ..
- * .. External Subroutines ..
- EXTERNAL DGEMM, DLACPY, DLASET, DORGRQ, DSYRK
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, MAX
- * ..
- * .. Scalars in Common ..
- CHARACTER*32 SRNAMT
- * ..
- * .. Common blocks ..
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Executable Statements ..
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
- RESULT( 1 ) = ZERO
- RESULT( 2 ) = ZERO
- RETURN
- END IF
- *
- EPS = DLAMCH( 'Epsilon' )
- *
- * Copy the last k rows of the factorization to the array Q
- *
- CALL DLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
- IF( K.LT.N )
- $ CALL DLACPY( 'Full', K, N-K, AF( M-K+1, 1 ), LDA,
- $ Q( M-K+1, 1 ), LDA )
- IF( K.GT.1 )
- $ CALL DLACPY( 'Lower', K-1, K-1, AF( M-K+2, N-K+1 ), LDA,
- $ Q( M-K+2, N-K+1 ), LDA )
- *
- * Generate the last n rows of the matrix Q
- *
- SRNAMT = 'DORGRQ'
- CALL DORGRQ( M, N, K, Q, LDA, TAU( M-K+1 ), WORK, LWORK, INFO )
- *
- * Copy R(m-k+1:m,n-m+1:n)
- *
- CALL DLASET( 'Full', K, M, ZERO, ZERO, R( M-K+1, N-M+1 ), LDA )
- CALL DLACPY( 'Upper', K, K, AF( M-K+1, N-K+1 ), LDA,
- $ R( M-K+1, N-K+1 ), LDA )
- *
- * Compute R(m-k+1:m,n-m+1:n) - A(m-k+1:m,1:n) * Q(n-m+1:n,1:n)'
- *
- CALL DGEMM( 'No transpose', 'Transpose', K, M, N, -ONE,
- $ A( M-K+1, 1 ), LDA, Q, LDA, ONE, R( M-K+1, N-M+1 ),
- $ LDA )
- *
- * Compute norm( R - A*Q' ) / ( N * norm(A) * EPS ) .
- *
- ANORM = DLANGE( '1', K, N, A( M-K+1, 1 ), LDA, RWORK )
- RESID = DLANGE( '1', K, M, R( M-K+1, N-M+1 ), LDA, RWORK )
- IF( ANORM.GT.ZERO ) THEN
- RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, N ) ) ) / ANORM ) / EPS
- ELSE
- RESULT( 1 ) = ZERO
- END IF
- *
- * Compute I - Q*Q'
- *
- CALL DLASET( 'Full', M, M, ZERO, ONE, R, LDA )
- CALL DSYRK( 'Upper', 'No transpose', M, N, -ONE, Q, LDA, ONE, R,
- $ LDA )
- *
- * Compute norm( I - Q*Q' ) / ( N * EPS ) .
- *
- RESID = DLANSY( '1', 'Upper', M, R, LDA, RWORK )
- *
- RESULT( 2 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / EPS
- *
- RETURN
- *
- * End of DRQT02
- *
- END
|