|
- /***************************************************************************
- Copyright (c) 2020, The OpenBLAS Project
- All rights reserved.
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are
- met:
- 1. Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in
- the documentation and/or other materials provided with the
- distribution.
- 3. Neither the name of the OpenBLAS project nor the names of
- its contributors may be used to endorse or promote products
- derived from this software without specific prior written permission.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
- USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *****************************************************************************/
-
- #include "common.h"
- #if !defined(DOUBLE)
- #define VSETVL(n) __riscv_vsetvl_e32m4(n)
- #define VSETVL_MAX __riscv_vsetvlmax_e32m1()
- #define FLOAT_V_T vfloat32m4_t
- #define FLOAT_V_T_M1 vfloat32m1_t
- #define VLEV_FLOAT __riscv_vle32_v_f32m4
- #define VLSEV_FLOAT __riscv_vlse32_v_f32m4
- #define VSEV_FLOAT __riscv_vse32_v_f32m4
- #define VSSEV_FLOAT __riscv_vsse32_v_f32m4
- #define VFREDSUM_FLOAT __riscv_vfredusum_vs_f32m4_f32m1
- #define VFMACCVV_FLOAT __riscv_vfmacc_vv_f32m4
- #define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f32m4
- #define VFMACCVV_FLOAT_TU __riscv_vfmacc_vv_f32m4_tu
- #define VFNMSACVV_FLOAT_TU __riscv_vfnmsac_vv_f32m4_tu
- #define VFMACCVF_FLOAT __riscv_vfmacc_vf_f32m4
- #define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f32m4
- #define VFMVVF_FLOAT __riscv_vfmv_v_f_f32m4
- #define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f32m1
- #define VFMULVV_FLOAT __riscv_vfmul_vv_f32m4
- #define VFMVFS_FLOAT_M1 __riscv_vfmv_f_s_f32m1_f32
- #else
- #define VSETVL(n) __riscv_vsetvl_e64m4(n)
- #define VSETVL_MAX __riscv_vsetvlmax_e64m1()
- #define FLOAT_V_T vfloat64m4_t
- #define FLOAT_V_T_M1 vfloat64m1_t
- #define VLEV_FLOAT __riscv_vle64_v_f64m4
- #define VLSEV_FLOAT __riscv_vlse64_v_f64m4
- #define VSEV_FLOAT __riscv_vse64_v_f64m4
- #define VSSEV_FLOAT __riscv_vsse64_v_f64m4
- #define VFREDSUM_FLOAT __riscv_vfredusum_vs_f64m4_f64m1
- #define VFMACCVV_FLOAT __riscv_vfmacc_vv_f64m4
- #define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f64m4
- #define VFMACCVV_FLOAT_TU __riscv_vfmacc_vv_f64m4_tu
- #define VFNMSACVV_FLOAT_TU __riscv_vfnmsac_vv_f64m4_tu
- #define VFMACCVF_FLOAT __riscv_vfmacc_vf_f64m4
- #define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f64m4
- #define VFMVVF_FLOAT __riscv_vfmv_v_f_f64m4
- #define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f64m1
- #define VFMULVV_FLOAT __riscv_vfmul_vv_f64m4
- #define VFMVFS_FLOAT_M1 __riscv_vfmv_f_s_f64m1_f64
- #endif
-
- int CNAME(BLASLONG m, BLASLONG offset, FLOAT alpha_r, FLOAT alpha_i,
- FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y, FLOAT *buffer)
- {
- BLASLONG i, j, k;
- BLASLONG ix,iy;
- BLASLONG jx,jy;
- FLOAT temp1[2];
- FLOAT temp2[2];
- FLOAT *a_ptr = a;
- BLASLONG gvl = VSETVL_MAX;
- FLOAT_V_T_M1 v_res, v_z0;
- v_res = VFMVVF_FLOAT_M1(0, gvl);
- v_z0 = VFMVVF_FLOAT_M1(0, gvl);
-
-
- FLOAT_V_T va_r, va_i, vx_r, vx_i, vy_r, vy_i, vr_r, vr_i;
- BLASLONG stride_x, stride_y, inc_xv, inc_yv;
-
- BLASLONG m1 = m - offset;
- jx = m1 * inc_x;
- jy = m1 * inc_y;
- a_ptr += m1 * lda;
- stride_x = 2 * inc_x * sizeof(FLOAT);
- stride_y = 2 * inc_y * sizeof(FLOAT);
- for (j=m1; j<m; j++)
- {
- temp1[0] = alpha_r * x[2 * jx] - alpha_i * x[2 * jx + 1];
- temp1[1] = alpha_r * x[2 * jx + 1] + alpha_i * x[2 * jx];
- temp2[0] = 0;
- temp2[1] = 0;
- if(j > 0){
- ix = 0;
- iy = 0;
- i = 0;
- gvl = VSETVL(j);
- inc_xv = inc_x * gvl;
- inc_yv = inc_y * gvl;
- vr_r = VFMVVF_FLOAT(0, gvl);
- vr_i = VFMVVF_FLOAT(0, gvl);
- for(k = 0; k < j / gvl; k++){
- va_r = VLSEV_FLOAT(&a_ptr[2 * i], 2 * sizeof(FLOAT), gvl);
- va_i = VLSEV_FLOAT(&a_ptr[2 * i + 1], 2 * sizeof(FLOAT), gvl);
-
- vy_r = VLSEV_FLOAT(&y[2 * iy], stride_y, gvl);
- vy_i = VLSEV_FLOAT(&y[2 * iy + 1], stride_y, gvl);
-
- vy_r = VFMACCVF_FLOAT(vy_r, temp1[0], va_r, gvl);
- vy_r = VFNMSACVF_FLOAT(vy_r, temp1[1], va_i, gvl);
- vy_i = VFMACCVF_FLOAT(vy_i, temp1[0], va_i, gvl);
- vy_i = VFMACCVF_FLOAT(vy_i, temp1[1], va_r, gvl);
-
- VSSEV_FLOAT(&y[2 * iy], stride_y, vy_r, gvl);
- VSSEV_FLOAT(&y[2 * iy + 1], stride_y, vy_i, gvl);
-
- vx_r = VLSEV_FLOAT(&x[2 * ix], stride_x, gvl);
- vx_i = VLSEV_FLOAT(&x[2 * ix + 1], stride_x, gvl);
- vr_r = VFMACCVV_FLOAT(vr_r, vx_r, va_r, gvl);
- vr_r = VFNMSACVV_FLOAT(vr_r, vx_i, va_i, gvl);
- vr_i = VFMACCVV_FLOAT(vr_i, vx_r, va_i, gvl);
- vr_i = VFMACCVV_FLOAT(vr_i, vx_i, va_r, gvl);
-
- i += gvl;
- ix += inc_xv;
- iy += inc_yv;
- }
-
- if(i < j){
- unsigned int gvl_rem = VSETVL(j-i);
- vy_r = VLSEV_FLOAT(&y[2 * iy], stride_y, gvl_rem);
- vy_i = VLSEV_FLOAT(&y[2 * iy + 1], stride_y, gvl_rem);
-
- va_r = VLSEV_FLOAT(&a_ptr[2 * i], 2 * sizeof(FLOAT), gvl_rem);
- va_i = VLSEV_FLOAT(&a_ptr[2 * i + 1], 2 * sizeof(FLOAT), gvl_rem);
-
- vy_r = VFMACCVF_FLOAT(vy_r, temp1[0], va_r, gvl_rem);
- vy_r = VFNMSACVF_FLOAT(vy_r, temp1[1], va_i, gvl_rem);
- vy_i = VFMACCVF_FLOAT(vy_i, temp1[0], va_i, gvl_rem);
- vy_i = VFMACCVF_FLOAT(vy_i, temp1[1], va_r, gvl_rem);
-
- VSSEV_FLOAT(&y[2 * iy], stride_y, vy_r, gvl_rem);
- VSSEV_FLOAT(&y[2 * iy + 1], stride_y, vy_i, gvl_rem);
-
- vx_r = VLSEV_FLOAT(&x[2 * ix], stride_x, gvl_rem);
- vx_i = VLSEV_FLOAT(&x[2 * ix + 1], stride_x, gvl_rem);
- vr_r = VFMACCVV_FLOAT_TU(vr_r, vx_r, va_r, gvl_rem);
- vr_r = VFNMSACVV_FLOAT_TU(vr_r, vx_i, va_i, gvl_rem);
- vr_i = VFMACCVV_FLOAT_TU(vr_i, vx_r, va_i, gvl_rem);
- vr_i = VFMACCVV_FLOAT_TU(vr_i, vx_i, va_r, gvl_rem);
-
- }
- v_res = VFREDSUM_FLOAT(vr_r, v_z0, gvl);
- temp2[0] = VFMVFS_FLOAT_M1(v_res);
- v_res = VFREDSUM_FLOAT(vr_i, v_z0, gvl);
- temp2[1] = VFMVFS_FLOAT_M1(v_res);
- }
-
- y[2 * jy] += temp1[0] * a_ptr[j * 2] - temp1[1] * a_ptr[j * 2 + 1] + alpha_r * temp2[0] - alpha_i * temp2[1];
- y[2 * jy + 1] += temp1[1] * a_ptr[j * 2] + temp1[0] * a_ptr[j * 2 + 1] + alpha_r * temp2[1] + alpha_i * temp2[0];
-
- a_ptr += 2 * lda;
- jx += inc_x;
- jy += inc_y;
- }
-
- return(0);
- }
|