|
- /***************************************************************************
- Copyright (c) 2020, The OpenBLAS Project
- All rights reserved.
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are
- met:
- 1. Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in
- the documentation and/or other materials provided with the
- distribution.
- 3. Neither the name of the OpenBLAS project nor the names of
- its contributors may be used to endorse or promote products
- derived from this software without specific prior written permission.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
- USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *****************************************************************************/
-
- #include "common.h"
- #if !defined(DOUBLE)
- #define RVV_EFLOAT RVV_E32
- #define RVV_M RVV_M4
- #define FLOAT_V_T float32xm4_t
- #define VLEV_FLOAT vlev_float32xm4
- #define VLSEV_FLOAT vlsev_float32xm4
- #define VFREDSUM_FLOAT vfredsumvs_float32xm4
- #define VFMACCVV_FLOAT vfmaccvv_float32xm4
- #define VFMVVF_FLOAT vfmvvf_float32xm4
- #define VFDOTVV_FLOAT vfdotvv_float32xm4
- #define VFMULVV_FLOAT vfmulvv_float32xm4
- #define VFMSACVV_FLOAT vfmsacvv_float32xm4
- #define VFNMSACVV_FLOAT vfnmsacvv_float32xm4
- #else
- #define RVV_EFLOAT RVV_E64
- #define RVV_M RVV_M4
- #define FLOAT_V_T float64xm4_t
- #define VLEV_FLOAT vlev_float64xm4
- #define VLSEV_FLOAT vlsev_float64xm4
- #define VFREDSUM_FLOAT vfredsumvs_float64xm4
- #define VFMACCVV_FLOAT vfmaccvv_float64xm4
- #define VFMVVF_FLOAT vfmvvf_float64xm4
- #define VFDOTVV_FLOAT vfdotvv_float64xm4
- #define VFMULVV_FLOAT vfmulvv_float64xm4
- #define VFMSACVV_FLOAT vfmsacvv_float64xm4
- #define VFNMSACVV_FLOAT vfnmsacvv_float64xm4
- #endif
-
- OPENBLAS_COMPLEX_FLOAT CNAME(BLASLONG n, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y)
- {
- BLASLONG i=0, j=0;
- BLASLONG ix=0,iy=0;
- FLOAT dot[2];
- OPENBLAS_COMPLEX_FLOAT result;
-
- dot[0]=0.0;
- dot[1]=0.0;
-
- CREAL(result) = 0.0;
- CIMAG(result) = 0.0;
-
- if ( n < 1 ) return(result);
-
- unsigned int gvl = 0;
-
- FLOAT_V_T vr0, vr1, vx0, vx1, vy0, vy1;
- gvl = vsetvli(n, RVV_EFLOAT, RVV_M);
- vr0 = VFMVVF_FLOAT(0, gvl);
- vr1 = VFMVVF_FLOAT(0, gvl);
- BLASLONG stride_x = inc_x * 2 * sizeof(FLOAT);
- BLASLONG stride_y = inc_y * 2 * sizeof(FLOAT);
- BLASLONG inc_xv = inc_x * 2 * gvl;
- BLASLONG inc_yv = inc_y * 2 * gvl;
-
- for(i=0,j=0; i<n/gvl; i++){
- vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl);
- vx1 = VLSEV_FLOAT(&x[ix+1], stride_x, gvl);
- vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl);
- vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl);
-
- vr0 = VFMACCVV_FLOAT(vr0, vx0, vy0, gvl);
- vr1 = VFMACCVV_FLOAT(vr1, vx0, vy1, gvl);
- #if !defined(CONJ)
- vr0 = VFNMSACVV_FLOAT(vr0, vx1, vy1, gvl);
- vr1 = VFMACCVV_FLOAT(vr1, vx1, vy0, gvl);
- #else
- vr0 = VFMACCVV_FLOAT(vr0, vx1, vy1, gvl);
- vr1 = VFNMSACVV_FLOAT(vr1, vx1, vy0, gvl);
- #endif
- j += gvl;
- ix += inc_xv;
- iy += inc_yv;
- }
- vx0 = VFMVVF_FLOAT(0, gvl);
- vr0 = VFREDSUM_FLOAT(vr0, vx0, gvl);
- dot[0] += vr0[0];
- vr1 = VFREDSUM_FLOAT(vr1, vx0, gvl);
- dot[1] += vr1[0];
- //tail
- if(j < n){
- gvl = vsetvli(n-j, RVV_EFLOAT, RVV_M);
- vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl);
- vx1 = VLSEV_FLOAT(&x[ix+1], stride_x, gvl);
- vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl);
- vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl);
-
- #if !defined(CONJ)
- vr0 = VFMULVV_FLOAT(vx1, vy1, gvl);
- vr0 = VFMSACVV_FLOAT(vr0, vx0, vy0, gvl);
- vr1 = VFMULVV_FLOAT(vx0, vy1, gvl);
- vr1 = VFMACCVV_FLOAT(vr1, vx1, vy0, gvl);
- #else
- vr0 = VFMULVV_FLOAT(vx0, vy0, gvl);
- vr0 = VFMACCVV_FLOAT(vr0, vx1, vy1, gvl);
- vr1 = VFMULVV_FLOAT(vx1, vy0, gvl);
- vr1 = VFMSACVV_FLOAT(vr1, vx0, vy1, gvl);
- #endif
- vx0 = VFMVVF_FLOAT(0, gvl);
- vr0 = VFREDSUM_FLOAT(vr0, vx0, gvl);
- dot[0] += vr0[0];
- vr1 = VFREDSUM_FLOAT(vr1, vx0, gvl);
- dot[1] += vr1[0];
- }
- CREAL(result) = dot[0];
- CIMAG(result) = dot[1];
- return(result);
- }
|