|
- *> \brief \b CPPT03
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
- * RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER LDWORK, N
- * REAL RCOND, RESID
- * ..
- * .. Array Arguments ..
- * REAL RWORK( * )
- * COMPLEX A( * ), AINV( * ), WORK( LDWORK, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CPPT03 computes the residual for a Hermitian packed matrix times its
- *> inverse:
- *> norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
- *> where EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> Hermitian matrix A is stored:
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows and columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (N*(N+1)/2)
- *> The original Hermitian matrix A, stored as a packed
- *> triangular matrix.
- *> \endverbatim
- *>
- *> \param[in] AINV
- *> \verbatim
- *> AINV is COMPLEX array, dimension (N*(N+1)/2)
- *> The (Hermitian) inverse of the matrix A, stored as a packed
- *> triangular matrix.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (LDWORK,N)
- *> \endverbatim
- *>
- *> \param[in] LDWORK
- *> \verbatim
- *> LDWORK is INTEGER
- *> The leading dimension of the array WORK. LDWORK >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is REAL
- *> The reciprocal of the condition number of A, computed as
- *> ( 1/norm(A) ) / norm(AINV).
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is REAL
- *> norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
- $ RESID )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER LDWORK, N
- REAL RCOND, RESID
- * ..
- * .. Array Arguments ..
- REAL RWORK( * )
- COMPLEX A( * ), AINV( * ), WORK( LDWORK, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- COMPLEX CZERO, CONE
- PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
- $ CONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, J, JJ
- REAL AINVNM, ANORM, EPS
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL CLANGE, CLANHP, SLAMCH
- EXTERNAL LSAME, CLANGE, CLANHP, SLAMCH
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CONJG, REAL
- * ..
- * .. External Subroutines ..
- EXTERNAL CCOPY, CHPMV
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0.
- *
- IF( N.LE.0 ) THEN
- RCOND = ONE
- RESID = ZERO
- RETURN
- END IF
- *
- * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
- *
- EPS = SLAMCH( 'Epsilon' )
- ANORM = CLANHP( '1', UPLO, N, A, RWORK )
- AINVNM = CLANHP( '1', UPLO, N, AINV, RWORK )
- IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCOND = ZERO
- RESID = ONE / EPS
- RETURN
- END IF
- RCOND = ( ONE/ANORM ) / AINVNM
- *
- * UPLO = 'U':
- * Copy the leading N-1 x N-1 submatrix of AINV to WORK(1:N,2:N) and
- * expand it to a full matrix, then multiply by A one column at a
- * time, moving the result one column to the left.
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- *
- * Copy AINV
- *
- JJ = 1
- DO 20 J = 1, N - 1
- CALL CCOPY( J, AINV( JJ ), 1, WORK( 1, J+1 ), 1 )
- DO 10 I = 1, J - 1
- WORK( J, I+1 ) = CONJG( AINV( JJ+I-1 ) )
- 10 CONTINUE
- JJ = JJ + J
- 20 CONTINUE
- JJ = ( ( N-1 )*N ) / 2 + 1
- DO 30 I = 1, N - 1
- WORK( N, I+1 ) = CONJG( AINV( JJ+I-1 ) )
- 30 CONTINUE
- *
- * Multiply by A
- *
- DO 40 J = 1, N - 1
- CALL CHPMV( 'Upper', N, -CONE, A, WORK( 1, J+1 ), 1, CZERO,
- $ WORK( 1, J ), 1 )
- 40 CONTINUE
- CALL CHPMV( 'Upper', N, -CONE, A, AINV( JJ ), 1, CZERO,
- $ WORK( 1, N ), 1 )
- *
- * UPLO = 'L':
- * Copy the trailing N-1 x N-1 submatrix of AINV to WORK(1:N,1:N-1)
- * and multiply by A, moving each column to the right.
- *
- ELSE
- *
- * Copy AINV
- *
- DO 50 I = 1, N - 1
- WORK( 1, I ) = CONJG( AINV( I+1 ) )
- 50 CONTINUE
- JJ = N + 1
- DO 70 J = 2, N
- CALL CCOPY( N-J+1, AINV( JJ ), 1, WORK( J, J-1 ), 1 )
- DO 60 I = 1, N - J
- WORK( J, J+I-1 ) = CONJG( AINV( JJ+I ) )
- 60 CONTINUE
- JJ = JJ + N - J + 1
- 70 CONTINUE
- *
- * Multiply by A
- *
- DO 80 J = N, 2, -1
- CALL CHPMV( 'Lower', N, -CONE, A, WORK( 1, J-1 ), 1, CZERO,
- $ WORK( 1, J ), 1 )
- 80 CONTINUE
- CALL CHPMV( 'Lower', N, -CONE, A, AINV( 1 ), 1, CZERO,
- $ WORK( 1, 1 ), 1 )
- *
- END IF
- *
- * Add the identity matrix to WORK .
- *
- DO 90 I = 1, N
- WORK( I, I ) = WORK( I, I ) + CONE
- 90 CONTINUE
- *
- * Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
- *
- RESID = CLANGE( '1', N, N, WORK, LDWORK, RWORK )
- *
- RESID = ( ( RESID*RCOND )/EPS ) / REAL( N )
- *
- RETURN
- *
- * End of CPPT03
- *
- END
|