|
- *> \brief \b CPPT01
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CPPT01( UPLO, N, A, AFAC, RWORK, RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER N
- * REAL RESID
- * ..
- * .. Array Arguments ..
- * REAL RWORK( * )
- * COMPLEX A( * ), AFAC( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CPPT01 reconstructs a Hermitian positive definite packed matrix A
- *> from its L*L' or U'*U factorization and computes the residual
- *> norm( L*L' - A ) / ( N * norm(A) * EPS ) or
- *> norm( U'*U - A ) / ( N * norm(A) * EPS ),
- *> where EPS is the machine epsilon, L' is the conjugate transpose of
- *> L, and U' is the conjugate transpose of U.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> Hermitian matrix A is stored:
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows and columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (N*(N+1)/2)
- *> The original Hermitian matrix A, stored as a packed
- *> triangular matrix.
- *> \endverbatim
- *>
- *> \param[in,out] AFAC
- *> \verbatim
- *> AFAC is COMPLEX array, dimension (N*(N+1)/2)
- *> On entry, the factor L or U from the L*L' or U'*U
- *> factorization of A, stored as a packed triangular matrix.
- *> Overwritten with the reconstructed matrix, and then with the
- *> difference L*L' - A (or U'*U - A).
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is REAL
- *> If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
- *> If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CPPT01( UPLO, N, A, AFAC, RWORK, RESID )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER N
- REAL RESID
- * ..
- * .. Array Arguments ..
- REAL RWORK( * )
- COMPLEX A( * ), AFAC( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, K, KC
- REAL ANORM, EPS, TR
- COMPLEX TC
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL CLANHP, SLAMCH
- COMPLEX CDOTC
- EXTERNAL LSAME, CLANHP, SLAMCH, CDOTC
- * ..
- * .. External Subroutines ..
- EXTERNAL CHPR, CSCAL, CTPMV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC AIMAG, REAL
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0
- *
- IF( N.LE.0 ) THEN
- RESID = ZERO
- RETURN
- END IF
- *
- * Exit with RESID = 1/EPS if ANORM = 0.
- *
- EPS = SLAMCH( 'Epsilon' )
- ANORM = CLANHP( '1', UPLO, N, A, RWORK )
- IF( ANORM.LE.ZERO ) THEN
- RESID = ONE / EPS
- RETURN
- END IF
- *
- * Check the imaginary parts of the diagonal elements and return with
- * an error code if any are nonzero.
- *
- KC = 1
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO 10 K = 1, N
- IF( AIMAG( AFAC( KC ) ).NE.ZERO ) THEN
- RESID = ONE / EPS
- RETURN
- END IF
- KC = KC + K + 1
- 10 CONTINUE
- ELSE
- DO 20 K = 1, N
- IF( AIMAG( AFAC( KC ) ).NE.ZERO ) THEN
- RESID = ONE / EPS
- RETURN
- END IF
- KC = KC + N - K + 1
- 20 CONTINUE
- END IF
- *
- * Compute the product U'*U, overwriting U.
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- KC = ( N*( N-1 ) ) / 2 + 1
- DO 30 K = N, 1, -1
- *
- * Compute the (K,K) element of the result.
- *
- TR = REAL( CDOTC( K, AFAC( KC ), 1, AFAC( KC ), 1 ) )
- AFAC( KC+K-1 ) = TR
- *
- * Compute the rest of column K.
- *
- IF( K.GT.1 ) THEN
- CALL CTPMV( 'Upper', 'Conjugate', 'Non-unit', K-1, AFAC,
- $ AFAC( KC ), 1 )
- KC = KC - ( K-1 )
- END IF
- 30 CONTINUE
- *
- * Compute the difference L*L' - A
- *
- KC = 1
- DO 50 K = 1, N
- DO 40 I = 1, K - 1
- AFAC( KC+I-1 ) = AFAC( KC+I-1 ) - A( KC+I-1 )
- 40 CONTINUE
- AFAC( KC+K-1 ) = AFAC( KC+K-1 ) - REAL( A( KC+K-1 ) )
- KC = KC + K
- 50 CONTINUE
- *
- * Compute the product L*L', overwriting L.
- *
- ELSE
- KC = ( N*( N+1 ) ) / 2
- DO 60 K = N, 1, -1
- *
- * Add a multiple of column K of the factor L to each of
- * columns K+1 through N.
- *
- IF( K.LT.N )
- $ CALL CHPR( 'Lower', N-K, ONE, AFAC( KC+1 ), 1,
- $ AFAC( KC+N-K+1 ) )
- *
- * Scale column K by the diagonal element.
- *
- TC = AFAC( KC )
- CALL CSCAL( N-K+1, TC, AFAC( KC ), 1 )
- *
- KC = KC - ( N-K+2 )
- 60 CONTINUE
- *
- * Compute the difference U'*U - A
- *
- KC = 1
- DO 80 K = 1, N
- AFAC( KC ) = AFAC( KC ) - REAL( A( KC ) )
- DO 70 I = K + 1, N
- AFAC( KC+I-K ) = AFAC( KC+I-K ) - A( KC+I-K )
- 70 CONTINUE
- KC = KC + N - K + 1
- 80 CONTINUE
- END IF
- *
- * Compute norm( L*U - A ) / ( N * norm(A) * EPS )
- *
- RESID = CLANHP( '1', UPLO, N, AFAC, RWORK )
- *
- RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
- *
- RETURN
- *
- * End of CPPT01
- *
- END
|