|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c__0 = 0;
- static integer c_n1 = -1;
-
- /* > \brief <b> SGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors f
- or GE matrices</b> */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SGEES + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgees.f
- "> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgees.f
- "> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgees.f
- "> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI, */
- /* VS, LDVS, WORK, LWORK, BWORK, INFO ) */
-
- /* CHARACTER JOBVS, SORT */
- /* INTEGER INFO, LDA, LDVS, LWORK, N, SDIM */
- /* LOGICAL BWORK( * ) */
- /* REAL A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ), */
- /* $ WR( * ) */
- /* LOGICAL SELECT */
- /* EXTERNAL SELECT */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SGEES computes for an N-by-N real nonsymmetric matrix A, the */
- /* > eigenvalues, the real Schur form T, and, optionally, the matrix of */
- /* > Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T). */
- /* > */
- /* > Optionally, it also orders the eigenvalues on the diagonal of the */
- /* > real Schur form so that selected eigenvalues are at the top left. */
- /* > The leading columns of Z then form an orthonormal basis for the */
- /* > invariant subspace corresponding to the selected eigenvalues. */
- /* > */
- /* > A matrix is in real Schur form if it is upper quasi-triangular with */
- /* > 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the */
- /* > form */
- /* > [ a b ] */
- /* > [ c a ] */
- /* > */
- /* > where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc). */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOBVS */
- /* > \verbatim */
- /* > JOBVS is CHARACTER*1 */
- /* > = 'N': Schur vectors are not computed; */
- /* > = 'V': Schur vectors are computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SORT */
- /* > \verbatim */
- /* > SORT is CHARACTER*1 */
- /* > Specifies whether or not to order the eigenvalues on the */
- /* > diagonal of the Schur form. */
- /* > = 'N': Eigenvalues are not ordered; */
- /* > = 'S': Eigenvalues are ordered (see SELECT). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SELECT */
- /* > \verbatim */
- /* > SELECT is a LOGICAL FUNCTION of two REAL arguments */
- /* > SELECT must be declared EXTERNAL in the calling subroutine. */
- /* > If SORT = 'S', SELECT is used to select eigenvalues to sort */
- /* > to the top left of the Schur form. */
- /* > If SORT = 'N', SELECT is not referenced. */
- /* > An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if */
- /* > SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex */
- /* > conjugate pair of eigenvalues is selected, then both complex */
- /* > eigenvalues are selected. */
- /* > Note that a selected complex eigenvalue may no longer */
- /* > satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since */
- /* > ordering may change the value of complex eigenvalues */
- /* > (especially if the eigenvalue is ill-conditioned); in this */
- /* > case INFO is set to N+2 (see INFO below). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is REAL array, dimension (LDA,N) */
- /* > On entry, the N-by-N matrix A. */
- /* > On exit, A has been overwritten by its real Schur form T. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SDIM */
- /* > \verbatim */
- /* > SDIM is INTEGER */
- /* > If SORT = 'N', SDIM = 0. */
- /* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
- /* > for which SELECT is true. (Complex conjugate */
- /* > pairs for which SELECT is true for either */
- /* > eigenvalue count as 2.) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WR */
- /* > \verbatim */
- /* > WR is REAL array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WI */
- /* > \verbatim */
- /* > WI is REAL array, dimension (N) */
- /* > WR and WI contain the real and imaginary parts, */
- /* > respectively, of the computed eigenvalues in the same order */
- /* > that they appear on the diagonal of the output Schur form T. */
- /* > Complex conjugate pairs of eigenvalues will appear */
- /* > consecutively with the eigenvalue having the positive */
- /* > imaginary part first. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VS */
- /* > \verbatim */
- /* > VS is REAL array, dimension (LDVS,N) */
- /* > If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur */
- /* > vectors. */
- /* > If JOBVS = 'N', VS is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVS */
- /* > \verbatim */
- /* > LDVS is INTEGER */
- /* > The leading dimension of the array VS. LDVS >= 1; if */
- /* > JOBVS = 'V', LDVS >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) contains the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK >= f2cmax(1,3*N). */
- /* > For good performance, LWORK must generally be larger. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BWORK */
- /* > \verbatim */
- /* > BWORK is LOGICAL array, dimension (N) */
- /* > Not referenced if SORT = 'N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > > 0: if INFO = i, and i is */
- /* > <= N: the QR algorithm failed to compute all the */
- /* > eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI */
- /* > contain those eigenvalues which have converged; if */
- /* > JOBVS = 'V', VS contains the matrix which reduces A */
- /* > to its partially converged Schur form. */
- /* > = N+1: the eigenvalues could not be reordered because some */
- /* > eigenvalues were too close to separate (the problem */
- /* > is very ill-conditioned); */
- /* > = N+2: after reordering, roundoff changed values of some */
- /* > complex eigenvalues so that leading eigenvalues in */
- /* > the Schur form no longer satisfy SELECT=.TRUE. This */
- /* > could also be caused by underflow due to scaling. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2017 */
-
- /* > \ingroup realGEeigen */
-
- /* ===================================================================== */
- /* Subroutine */ void sgees_(char *jobvs, char *sort, logical(*select)(real*,real*), integer *n,
- real *a, integer *lda, integer *sdim, real *wr, real *wi, real *vs,
- integer *ldvs, real *work, integer *lwork, logical *bwork, integer *
- info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2, i__3;
-
- /* Local variables */
- integer ibal;
- real anrm;
- integer idum[1], ierr, itau, iwrk, inxt, i__;
- real s;
- integer icond, ieval;
- extern logical lsame_(char *, char *);
- logical cursl;
- integer i1, i2;
- extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
- integer *), sswap_(integer *, real *, integer *, real *, integer *
- );
- logical lst2sl;
- extern /* Subroutine */ void slabad_(real *, real *);
- logical scalea;
- integer ip;
- real cscale;
- extern /* Subroutine */ void sgebak_(char *, char *, integer *, integer *,
- integer *, real *, integer *, real *, integer *, integer *), sgebal_(char *, integer *, real *, integer *,
- integer *, integer *, real *, integer *);
- extern real slamch_(char *), slange_(char *, integer *, integer *,
- real *, integer *, real *);
- extern /* Subroutine */ void sgehrd_(integer *, integer *, integer *, real
- *, integer *, real *, real *, integer *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- real bignum;
- extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
- real *, integer *, integer *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *,
- real *, integer *);
- logical lastsl;
- extern /* Subroutine */ void sorghr_(integer *, integer *, integer *, real
- *, integer *, real *, real *, integer *, integer *), shseqr_(char
- *, char *, integer *, integer *, integer *, real *, integer *,
- real *, real *, real *, integer *, real *, integer *, integer *);
- integer minwrk, maxwrk;
- real smlnum;
- integer hswork;
- extern /* Subroutine */ void strsen_(char *, char *, logical *, integer *,
- real *, integer *, real *, integer *, real *, real *, integer *,
- real *, real *, real *, integer *, integer *, integer *, integer *
- );
- logical wantst, lquery, wantvs;
- integer ihi, ilo;
- real dum[1], eps, sep;
-
-
- /* -- LAPACK driver routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2017 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input arguments */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --wr;
- --wi;
- vs_dim1 = *ldvs;
- vs_offset = 1 + vs_dim1 * 1;
- vs -= vs_offset;
- --work;
- --bwork;
-
- /* Function Body */
- *info = 0;
- lquery = *lwork == -1;
- wantvs = lsame_(jobvs, "V");
- wantst = lsame_(sort, "S");
- if (! wantvs && ! lsame_(jobvs, "N")) {
- *info = -1;
- } else if (! wantst && ! lsame_(sort, "N")) {
- *info = -2;
- } else if (*n < 0) {
- *info = -4;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -6;
- } else if (*ldvs < 1 || wantvs && *ldvs < *n) {
- *info = -11;
- }
-
- /* Compute workspace */
- /* (Note: Comments in the code beginning "Workspace:" describe the */
- /* minimal amount of workspace needed at that point in the code, */
- /* as well as the preferred amount for good performance. */
- /* NB refers to the optimal block size for the immediately */
- /* following subroutine, as returned by ILAENV. */
- /* HSWORK refers to the workspace preferred by SHSEQR, as */
- /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
- /* the worst case.) */
-
- if (*info == 0) {
- if (*n == 0) {
- minwrk = 1;
- maxwrk = 1;
- } else {
- maxwrk = (*n << 1) + *n * ilaenv_(&c__1, "SGEHRD", " ", n, &c__1,
- n, &c__0, (ftnlen)6, (ftnlen)1);
- minwrk = *n * 3;
-
- shseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[1]
- , &vs[vs_offset], ldvs, &work[1], &c_n1, &ieval);
- hswork = work[1];
-
- if (! wantvs) {
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n + hswork;
- maxwrk = f2cmax(i__1,i__2);
- } else {
- /* Computing MAX */
- i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
- "SORGHR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n + hswork;
- maxwrk = f2cmax(i__1,i__2);
- }
- }
- work[1] = (real) maxwrk;
-
- if (*lwork < minwrk && ! lquery) {
- *info = -13;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("SGEES ", &i__1, (ftnlen)5);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- *sdim = 0;
- return;
- }
-
- /* Get machine constants */
-
- eps = slamch_("P");
- smlnum = slamch_("S");
- bignum = 1.f / smlnum;
- slabad_(&smlnum, &bignum);
- smlnum = sqrt(smlnum) / eps;
- bignum = 1.f / smlnum;
-
- /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
-
- anrm = slange_("M", n, n, &a[a_offset], lda, dum);
- scalea = FALSE_;
- if (anrm > 0.f && anrm < smlnum) {
- scalea = TRUE_;
- cscale = smlnum;
- } else if (anrm > bignum) {
- scalea = TRUE_;
- cscale = bignum;
- }
- if (scalea) {
- slascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
- ierr);
- }
-
- /* Permute the matrix to make it more nearly triangular */
- /* (Workspace: need N) */
-
- ibal = 1;
- sgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &work[ibal], &ierr);
-
- /* Reduce to upper Hessenberg form */
- /* (Workspace: need 3*N, prefer 2*N+N*NB) */
-
- itau = *n + ibal;
- iwrk = *n + itau;
- i__1 = *lwork - iwrk + 1;
- sgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
- &ierr);
-
- if (wantvs) {
-
- /* Copy Householder vectors to VS */
-
- slacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs)
- ;
-
- /* Generate orthogonal matrix in VS */
- /* (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
-
- i__1 = *lwork - iwrk + 1;
- sorghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk],
- &i__1, &ierr);
- }
-
- *sdim = 0;
-
- /* Perform QR iteration, accumulating Schur vectors in VS if desired */
- /* (Workspace: need N+1, prefer N+HSWORK (see comments) ) */
-
- iwrk = itau;
- i__1 = *lwork - iwrk + 1;
- shseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &vs[
- vs_offset], ldvs, &work[iwrk], &i__1, &ieval);
- if (ieval > 0) {
- *info = ieval;
- }
-
- /* Sort eigenvalues if desired */
-
- if (wantst && *info == 0) {
- if (scalea) {
- slascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wr[1], n, &
- ierr);
- slascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wi[1], n, &
- ierr);
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- bwork[i__] = (*select)(&wr[i__], &wi[i__]);
- /* L10: */
- }
-
- /* Reorder eigenvalues and transform Schur vectors */
- /* (Workspace: none needed) */
-
- i__1 = *lwork - iwrk + 1;
- strsen_("N", jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset],
- ldvs, &wr[1], &wi[1], sdim, &s, &sep, &work[iwrk], &i__1,
- idum, &c__1, &icond);
- if (icond > 0) {
- *info = *n + icond;
- }
- }
-
- if (wantvs) {
-
- /* Undo balancing */
- /* (Workspace: need N) */
-
- sgebak_("P", "R", n, &ilo, &ihi, &work[ibal], n, &vs[vs_offset], ldvs,
- &ierr);
- }
-
- if (scalea) {
-
- /* Undo scaling for the Schur form of A */
-
- slascl_("H", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &
- ierr);
- i__1 = *lda + 1;
- scopy_(n, &a[a_offset], &i__1, &wr[1], &c__1);
- if (cscale == smlnum) {
-
- /* If scaling back towards underflow, adjust WI if an */
- /* offdiagonal element of a 2-by-2 block in the Schur form */
- /* underflows. */
-
- if (ieval > 0) {
- i1 = ieval + 1;
- i2 = ihi - 1;
- i__1 = ilo - 1;
- /* Computing MAX */
- i__3 = ilo - 1;
- i__2 = f2cmax(i__3,1);
- slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[
- 1], &i__2, &ierr);
- } else if (wantst) {
- i1 = 1;
- i2 = *n - 1;
- } else {
- i1 = ilo;
- i2 = ihi - 1;
- }
- inxt = i1 - 1;
- i__1 = i2;
- for (i__ = i1; i__ <= i__1; ++i__) {
- if (i__ < inxt) {
- goto L20;
- }
- if (wi[i__] == 0.f) {
- inxt = i__ + 1;
- } else {
- if (a[i__ + 1 + i__ * a_dim1] == 0.f) {
- wi[i__] = 0.f;
- wi[i__ + 1] = 0.f;
- } else if (a[i__ + 1 + i__ * a_dim1] != 0.f && a[i__ + (
- i__ + 1) * a_dim1] == 0.f) {
- wi[i__] = 0.f;
- wi[i__ + 1] = 0.f;
- if (i__ > 1) {
- i__2 = i__ - 1;
- sswap_(&i__2, &a[i__ * a_dim1 + 1], &c__1, &a[(
- i__ + 1) * a_dim1 + 1], &c__1);
- }
- if (*n > i__ + 1) {
- i__2 = *n - i__ - 1;
- sswap_(&i__2, &a[i__ + (i__ + 2) * a_dim1], lda, &
- a[i__ + 1 + (i__ + 2) * a_dim1], lda);
- }
- if (wantvs) {
- sswap_(n, &vs[i__ * vs_dim1 + 1], &c__1, &vs[(i__
- + 1) * vs_dim1 + 1], &c__1);
- }
- a[i__ + (i__ + 1) * a_dim1] = a[i__ + 1 + i__ *
- a_dim1];
- a[i__ + 1 + i__ * a_dim1] = 0.f;
- }
- inxt = i__ + 2;
- }
- L20:
- ;
- }
- }
-
- /* Undo scaling for the imaginary part of the eigenvalues */
-
- i__1 = *n - ieval;
- /* Computing MAX */
- i__3 = *n - ieval;
- i__2 = f2cmax(i__3,1);
- slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[ieval +
- 1], &i__2, &ierr);
- }
-
- if (wantst && *info == 0) {
-
- /* Check if reordering successful */
-
- lastsl = TRUE_;
- lst2sl = TRUE_;
- *sdim = 0;
- ip = 0;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- cursl = (*select)(&wr[i__], &wi[i__]);
- if (wi[i__] == 0.f) {
- if (cursl) {
- ++(*sdim);
- }
- ip = 0;
- if (cursl && ! lastsl) {
- *info = *n + 2;
- }
- } else {
- if (ip == 1) {
-
- /* Last eigenvalue of conjugate pair */
-
- cursl = cursl || lastsl;
- lastsl = cursl;
- if (cursl) {
- *sdim += 2;
- }
- ip = -1;
- if (cursl && ! lst2sl) {
- *info = *n + 2;
- }
- } else {
-
- /* First eigenvalue of conjugate pair */
-
- ip = 1;
- }
- }
- lst2sl = lastsl;
- lastsl = cursl;
- /* L30: */
- }
- }
-
- work[1] = (real) maxwrk;
- return;
-
- /* End of SGEES */
-
- } /* sgees_ */
|