|
- *> \brief <b> SSTEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SSTEVR + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sstevr.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sstevr.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sstevr.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
- * M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
- * LIWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, RANGE
- * INTEGER IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
- * REAL ABSTOL, VL, VU
- * ..
- * .. Array Arguments ..
- * INTEGER ISUPPZ( * ), IWORK( * )
- * REAL D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SSTEVR computes selected eigenvalues and, optionally, eigenvectors
- *> of a real symmetric tridiagonal matrix T. Eigenvalues and
- *> eigenvectors can be selected by specifying either a range of values
- *> or a range of indices for the desired eigenvalues.
- *>
- *> Whenever possible, SSTEVR calls SSTEMR to compute the
- *> eigenspectrum using Relatively Robust Representations. SSTEMR
- *> computes eigenvalues by the dqds algorithm, while orthogonal
- *> eigenvectors are computed from various "good" L D L^T representations
- *> (also known as Relatively Robust Representations). Gram-Schmidt
- *> orthogonalization is avoided as far as possible. More specifically,
- *> the various steps of the algorithm are as follows. For the i-th
- *> unreduced block of T,
- *> (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
- *> is a relatively robust representation,
- *> (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
- *> relative accuracy by the dqds algorithm,
- *> (c) If there is a cluster of close eigenvalues, "choose" sigma_i
- *> close to the cluster, and go to step (a),
- *> (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
- *> compute the corresponding eigenvector by forming a
- *> rank-revealing twisted factorization.
- *> The desired accuracy of the output can be specified by the input
- *> parameter ABSTOL.
- *>
- *> For more details, see "A new O(n^2) algorithm for the symmetric
- *> tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
- *> Computer Science Division Technical Report No. UCB//CSD-97-971,
- *> UC Berkeley, May 1997.
- *>
- *>
- *> Note 1 : SSTEVR calls SSTEMR when the full spectrum is requested
- *> on machines which conform to the ieee-754 floating point standard.
- *> SSTEVR calls SSTEBZ and SSTEIN on non-ieee machines and
- *> when partial spectrum requests are made.
- *>
- *> Normal execution of SSTEMR may create NaNs and infinities and
- *> hence may abort due to a floating point exception in environments
- *> which do not handle NaNs and infinities in the ieee standard default
- *> manner.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] RANGE
- *> \verbatim
- *> RANGE is CHARACTER*1
- *> = 'A': all eigenvalues will be found.
- *> = 'V': all eigenvalues in the half-open interval (VL,VU]
- *> will be found.
- *> = 'I': the IL-th through IU-th eigenvalues will be found.
- *> For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
- *> SSTEIN are called
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> On entry, the n diagonal elements of the tridiagonal matrix
- *> A.
- *> On exit, D may be multiplied by a constant factor chosen
- *> to avoid over/underflow in computing the eigenvalues.
- *> \endverbatim
- *>
- *> \param[in,out] E
- *> \verbatim
- *> E is REAL array, dimension (max(1,N-1))
- *> On entry, the (n-1) subdiagonal elements of the tridiagonal
- *> matrix A in elements 1 to N-1 of E.
- *> On exit, E may be multiplied by a constant factor chosen
- *> to avoid over/underflow in computing the eigenvalues.
- *> \endverbatim
- *>
- *> \param[in] VL
- *> \verbatim
- *> VL is REAL
- *> If RANGE='V', the lower bound of the interval to
- *> be searched for eigenvalues. VL < VU.
- *> Not referenced if RANGE = 'A' or 'I'.
- *> \endverbatim
- *>
- *> \param[in] VU
- *> \verbatim
- *> VU is REAL
- *> If RANGE='V', the upper bound of the interval to
- *> be searched for eigenvalues. VL < VU.
- *> Not referenced if RANGE = 'A' or 'I'.
- *> \endverbatim
- *>
- *> \param[in] IL
- *> \verbatim
- *> IL is INTEGER
- *> If RANGE='I', the index of the
- *> smallest eigenvalue to be returned.
- *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
- *> Not referenced if RANGE = 'A' or 'V'.
- *> \endverbatim
- *>
- *> \param[in] IU
- *> \verbatim
- *> IU is INTEGER
- *> If RANGE='I', the index of the
- *> largest eigenvalue to be returned.
- *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
- *> Not referenced if RANGE = 'A' or 'V'.
- *> \endverbatim
- *>
- *> \param[in] ABSTOL
- *> \verbatim
- *> ABSTOL is REAL
- *> The absolute error tolerance for the eigenvalues.
- *> An approximate eigenvalue is accepted as converged
- *> when it is determined to lie in an interval [a,b]
- *> of width less than or equal to
- *>
- *> ABSTOL + EPS * max( |a|,|b| ) ,
- *>
- *> where EPS is the machine precision. If ABSTOL is less than
- *> or equal to zero, then EPS*|T| will be used in its place,
- *> where |T| is the 1-norm of the tridiagonal matrix obtained
- *> by reducing A to tridiagonal form.
- *>
- *> See "Computing Small Singular Values of Bidiagonal Matrices
- *> with Guaranteed High Relative Accuracy," by Demmel and
- *> Kahan, LAPACK Working Note #3.
- *>
- *> If high relative accuracy is important, set ABSTOL to
- *> SLAMCH( 'Safe minimum' ). Doing so will guarantee that
- *> eigenvalues are computed to high relative accuracy when
- *> possible in future releases. The current code does not
- *> make any guarantees about high relative accuracy, but
- *> future releases will. See J. Barlow and J. Demmel,
- *> "Computing Accurate Eigensystems of Scaled Diagonally
- *> Dominant Matrices", LAPACK Working Note #7, for a discussion
- *> of which matrices define their eigenvalues to high relative
- *> accuracy.
- *> \endverbatim
- *>
- *> \param[out] M
- *> \verbatim
- *> M is INTEGER
- *> The total number of eigenvalues found. 0 <= M <= N.
- *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is REAL array, dimension (N)
- *> The first M elements contain the selected eigenvalues in
- *> ascending order.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is REAL array, dimension (LDZ, max(1,M) )
- *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
- *> contain the orthonormal eigenvectors of the matrix A
- *> corresponding to the selected eigenvalues, with the i-th
- *> column of Z holding the eigenvector associated with W(i).
- *> Note: the user must ensure that at least max(1,M) columns are
- *> supplied in the array Z; if RANGE = 'V', the exact value of M
- *> is not known in advance and an upper bound must be used.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1, and if
- *> JOBZ = 'V', LDZ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] ISUPPZ
- *> \verbatim
- *> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
- *> The support of the eigenvectors in Z, i.e., the indices
- *> indicating the nonzero elements in Z. The i-th eigenvector
- *> is nonzero only in elements ISUPPZ( 2*i-1 ) through
- *> ISUPPZ( 2*i ).
- *> Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal (and
- *> minimal) LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= 20*N.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal sizes of the WORK and IWORK
- *> arrays, returns these values as the first entries of the WORK
- *> and IWORK arrays, and no error message related to LWORK or
- *> LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
- *> On exit, if INFO = 0, IWORK(1) returns the optimal (and
- *> minimal) LIWORK.
- *> \endverbatim
- *>
- *> \param[in] LIWORK
- *> \verbatim
- *> LIWORK is INTEGER
- *> The dimension of the array IWORK. LIWORK >= 10*N.
- *>
- *> If LIWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the optimal sizes of the WORK and
- *> IWORK arrays, returns these values as the first entries of
- *> the WORK and IWORK arrays, and no error message related to
- *> LWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: Internal error
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup stevr
- *
- *> \par Contributors:
- * ==================
- *>
- *> Inderjit Dhillon, IBM Almaden, USA \n
- *> Osni Marques, LBNL/NERSC, USA \n
- *> Ken Stanley, Computer Science Division, University of
- *> California at Berkeley, USA \n
- *> Jason Riedy, Computer Science Division, University of
- *> California at Berkeley, USA \n
- *>
- * =====================================================================
- SUBROUTINE SSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
- $ M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
- $ LIWORK, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, RANGE
- INTEGER IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
- REAL ABSTOL, VL, VU
- * ..
- * .. Array Arguments ..
- INTEGER ISUPPZ( * ), IWORK( * )
- REAL D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE, TWO
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL ALLEIG, INDEIG, TEST, LQUERY, VALEIG, WANTZ,
- $ TRYRAC
- CHARACTER ORDER
- INTEGER I, IEEEOK, IMAX, INDIBL, INDIFL, INDISP,
- $ INDIWO, ISCALE, J, JJ, LIWMIN, LWMIN, NSPLIT
- REAL BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
- $ TMP1, TNRM, VLL, VUU
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- REAL SLAMCH, SLANST, SROUNDUP_LWORK
- EXTERNAL LSAME, ILAENV, SLAMCH, SLANST, SROUNDUP_LWORK
- * ..
- * .. External Subroutines ..
- EXTERNAL SCOPY, SSCAL, SSTEBZ, SSTEMR, SSTEIN, SSTERF,
- $ SSWAP, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- *
- * Test the input parameters.
- *
- IEEEOK = ILAENV( 10, 'SSTEVR', 'N', 1, 2, 3, 4 )
- *
- WANTZ = LSAME( JOBZ, 'V' )
- ALLEIG = LSAME( RANGE, 'A' )
- VALEIG = LSAME( RANGE, 'V' )
- INDEIG = LSAME( RANGE, 'I' )
- *
- LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
- LWMIN = MAX( 1, 20*N )
- LIWMIN = MAX(1, 10*N )
- *
- *
- INFO = 0
- IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE
- IF( VALEIG ) THEN
- IF( N.GT.0 .AND. VU.LE.VL )
- $ INFO = -7
- ELSE IF( INDEIG ) THEN
- IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
- INFO = -8
- ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
- INFO = -9
- END IF
- END IF
- END IF
- IF( INFO.EQ.0 ) THEN
- IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
- INFO = -14
- END IF
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- WORK( 1 ) = SROUNDUP_LWORK(LWMIN)
- IWORK( 1 ) = LIWMIN
- *
- IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -17
- ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -19
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SSTEVR', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- M = 0
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( N.EQ.1 ) THEN
- IF( ALLEIG .OR. INDEIG ) THEN
- M = 1
- W( 1 ) = D( 1 )
- ELSE
- IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
- M = 1
- W( 1 ) = D( 1 )
- END IF
- END IF
- IF( WANTZ )
- $ Z( 1, 1 ) = ONE
- RETURN
- END IF
- *
- * Get machine constants.
- *
- SAFMIN = SLAMCH( 'Safe minimum' )
- EPS = SLAMCH( 'Precision' )
- SMLNUM = SAFMIN / EPS
- BIGNUM = ONE / SMLNUM
- RMIN = SQRT( SMLNUM )
- RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
- *
- *
- * Scale matrix to allowable range, if necessary.
- *
- ISCALE = 0
- IF( VALEIG ) THEN
- VLL = VL
- VUU = VU
- END IF
- *
- TNRM = SLANST( 'M', N, D, E )
- IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
- ISCALE = 1
- SIGMA = RMIN / TNRM
- ELSE IF( TNRM.GT.RMAX ) THEN
- ISCALE = 1
- SIGMA = RMAX / TNRM
- END IF
- IF( ISCALE.EQ.1 ) THEN
- CALL SSCAL( N, SIGMA, D, 1 )
- CALL SSCAL( N-1, SIGMA, E( 1 ), 1 )
- IF( VALEIG ) THEN
- VLL = VL*SIGMA
- VUU = VU*SIGMA
- END IF
- END IF
-
- * Initialize indices into workspaces. Note: These indices are used only
- * if SSTERF or SSTEMR fail.
-
- * IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and
- * stores the block indices of each of the M<=N eigenvalues.
- INDIBL = 1
- * IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and
- * stores the starting and finishing indices of each block.
- INDISP = INDIBL + N
- * IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
- * that corresponding to eigenvectors that fail to converge in
- * SSTEIN. This information is discarded; if any fail, the driver
- * returns INFO > 0.
- INDIFL = INDISP + N
- * INDIWO is the offset of the remaining integer workspace.
- INDIWO = INDISP + N
- *
- * If all eigenvalues are desired, then
- * call SSTERF or SSTEMR. If this fails for some eigenvalue, then
- * try SSTEBZ.
- *
- *
- TEST = .FALSE.
- IF( INDEIG ) THEN
- IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
- TEST = .TRUE.
- END IF
- END IF
- IF( ( ALLEIG .OR. TEST ) .AND. IEEEOK.EQ.1 ) THEN
- CALL SCOPY( N-1, E( 1 ), 1, WORK( 1 ), 1 )
- IF( .NOT.WANTZ ) THEN
- CALL SCOPY( N, D, 1, W, 1 )
- CALL SSTERF( N, W, WORK, INFO )
- ELSE
- CALL SCOPY( N, D, 1, WORK( N+1 ), 1 )
- IF (ABSTOL .LE. TWO*N*EPS) THEN
- TRYRAC = .TRUE.
- ELSE
- TRYRAC = .FALSE.
- END IF
- CALL SSTEMR( JOBZ, 'A', N, WORK( N+1 ), WORK, VL, VU, IL,
- $ IU, M, W, Z, LDZ, N, ISUPPZ, TRYRAC,
- $ WORK( 2*N+1 ), LWORK-2*N, IWORK, LIWORK, INFO )
- *
- END IF
- IF( INFO.EQ.0 ) THEN
- M = N
- GO TO 10
- END IF
- INFO = 0
- END IF
- *
- * Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
- *
- IF( WANTZ ) THEN
- ORDER = 'B'
- ELSE
- ORDER = 'E'
- END IF
-
- CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTOL, D, E, M,
- $ NSPLIT, W, IWORK( INDIBL ), IWORK( INDISP ), WORK,
- $ IWORK( INDIWO ), INFO )
- *
- IF( WANTZ ) THEN
- CALL SSTEIN( N, D, E, M, W, IWORK( INDIBL ), IWORK( INDISP ),
- $ Z, LDZ, WORK, IWORK( INDIWO ), IWORK( INDIFL ),
- $ INFO )
- END IF
- *
- * If matrix was scaled, then rescale eigenvalues appropriately.
- *
- 10 CONTINUE
- IF( ISCALE.EQ.1 ) THEN
- IF( INFO.EQ.0 ) THEN
- IMAX = M
- ELSE
- IMAX = INFO - 1
- END IF
- CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
- END IF
- *
- * If eigenvalues are not in order, then sort them, along with
- * eigenvectors.
- *
- IF( WANTZ ) THEN
- DO 30 J = 1, M - 1
- I = 0
- TMP1 = W( J )
- DO 20 JJ = J + 1, M
- IF( W( JJ ).LT.TMP1 ) THEN
- I = JJ
- TMP1 = W( JJ )
- END IF
- 20 CONTINUE
- *
- IF( I.NE.0 ) THEN
- W( I ) = W( J )
- W( J ) = TMP1
- CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
- END IF
- 30 CONTINUE
- END IF
- *
- * Causes problems with tests 19 & 20:
- * IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002
- *
- *
- WORK( 1 ) = SROUNDUP_LWORK(LWMIN)
- IWORK( 1 ) = LIWMIN
- RETURN
- *
- * End of SSTEVR
- *
- END
|