|
- *> \brief \b ZUPGTR
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZUPGTR + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zupgtr.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zupgtr.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zupgtr.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZUPGTR( UPLO, N, AP, TAU, Q, LDQ, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDQ, N
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 AP( * ), Q( LDQ, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZUPGTR generates a complex unitary matrix Q which is defined as the
- *> product of n-1 elementary reflectors H(i) of order n, as returned by
- *> ZHPTRD using packed storage:
- *>
- *> if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
- *>
- *> if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangular packed storage used in previous
- *> call to ZHPTRD;
- *> = 'L': Lower triangular packed storage used in previous
- *> call to ZHPTRD.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix Q. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] AP
- *> \verbatim
- *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
- *> The vectors which define the elementary reflectors, as
- *> returned by ZHPTRD.
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is COMPLEX*16 array, dimension (N-1)
- *> TAU(i) must contain the scalar factor of the elementary
- *> reflector H(i), as returned by ZHPTRD.
- *> \endverbatim
- *>
- *> \param[out] Q
- *> \verbatim
- *> Q is COMPLEX*16 array, dimension (LDQ,N)
- *> The N-by-N unitary matrix Q.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q. LDQ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (N-1)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16OTHERcomputational
- *
- * =====================================================================
- SUBROUTINE ZUPGTR( UPLO, N, AP, TAU, Q, LDQ, WORK, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDQ, N
- * ..
- * .. Array Arguments ..
- COMPLEX*16 AP( * ), Q( LDQ, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
- $ CONE = ( 1.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER I, IINFO, IJ, J
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZUNG2L, ZUNG2R
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
- INFO = -6
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZUPGTR', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( UPPER ) THEN
- *
- * Q was determined by a call to ZHPTRD with UPLO = 'U'
- *
- * Unpack the vectors which define the elementary reflectors and
- * set the last row and column of Q equal to those of the unit
- * matrix
- *
- IJ = 2
- DO 20 J = 1, N - 1
- DO 10 I = 1, J - 1
- Q( I, J ) = AP( IJ )
- IJ = IJ + 1
- 10 CONTINUE
- IJ = IJ + 2
- Q( N, J ) = CZERO
- 20 CONTINUE
- DO 30 I = 1, N - 1
- Q( I, N ) = CZERO
- 30 CONTINUE
- Q( N, N ) = CONE
- *
- * Generate Q(1:n-1,1:n-1)
- *
- CALL ZUNG2L( N-1, N-1, N-1, Q, LDQ, TAU, WORK, IINFO )
- *
- ELSE
- *
- * Q was determined by a call to ZHPTRD with UPLO = 'L'.
- *
- * Unpack the vectors which define the elementary reflectors and
- * set the first row and column of Q equal to those of the unit
- * matrix
- *
- Q( 1, 1 ) = CONE
- DO 40 I = 2, N
- Q( I, 1 ) = CZERO
- 40 CONTINUE
- IJ = 3
- DO 60 J = 2, N
- Q( 1, J ) = CZERO
- DO 50 I = J + 1, N
- Q( I, J ) = AP( IJ )
- IJ = IJ + 1
- 50 CONTINUE
- IJ = IJ + 2
- 60 CONTINUE
- IF( N.GT.1 ) THEN
- *
- * Generate Q(2:n,2:n)
- *
- CALL ZUNG2R( N-1, N-1, N-1, Q( 2, 2 ), LDQ, TAU, WORK,
- $ IINFO )
- END IF
- END IF
- RETURN
- *
- * End of ZUPGTR
- *
- END
|