|
- *> \brief \b ZUNGQR
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZUNGQR + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zungqr.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zungqr.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zungqr.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZUNGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, K, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZUNGQR generates an M-by-N complex matrix Q with orthonormal columns,
- *> which is defined as the first N columns of a product of K elementary
- *> reflectors of order M
- *>
- *> Q = H(1) H(2) . . . H(k)
- *>
- *> as returned by ZGEQRF.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix Q. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix Q. M >= N >= 0.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The number of elementary reflectors whose product defines the
- *> matrix Q. N >= K >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the i-th column must contain the vector which
- *> defines the elementary reflector H(i), for i = 1,2,...,k, as
- *> returned by ZGEQRF in the first k columns of its array
- *> argument A.
- *> On exit, the M-by-N matrix Q.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The first dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is COMPLEX*16 array, dimension (K)
- *> TAU(i) must contain the scalar factor of the elementary
- *> reflector H(i), as returned by ZGEQRF.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,N).
- *> For optimum performance LWORK >= N*NB, where NB is the
- *> optimal blocksize.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument has an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16OTHERcomputational
- *
- * =====================================================================
- SUBROUTINE ZUNGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INFO, K, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ZERO
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER I, IB, IINFO, IWS, J, KI, KK, L, LDWORK,
- $ LWKOPT, NB, NBMIN, NX
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZLARFB, ZLARFT, ZUNG2R
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- EXTERNAL ILAENV
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- NB = ILAENV( 1, 'ZUNGQR', ' ', M, N, K, -1 )
- LWKOPT = MAX( 1, N )*NB
- WORK( 1 ) = LWKOPT
- LQUERY = ( LWORK.EQ.-1 )
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
- INFO = -2
- ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -5
- ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
- INFO = -8
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZUNGQR', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.LE.0 ) THEN
- WORK( 1 ) = 1
- RETURN
- END IF
- *
- NBMIN = 2
- NX = 0
- IWS = N
- IF( NB.GT.1 .AND. NB.LT.K ) THEN
- *
- * Determine when to cross over from blocked to unblocked code.
- *
- NX = MAX( 0, ILAENV( 3, 'ZUNGQR', ' ', M, N, K, -1 ) )
- IF( NX.LT.K ) THEN
- *
- * Determine if workspace is large enough for blocked code.
- *
- LDWORK = N
- IWS = LDWORK*NB
- IF( LWORK.LT.IWS ) THEN
- *
- * Not enough workspace to use optimal NB: reduce NB and
- * determine the minimum value of NB.
- *
- NB = LWORK / LDWORK
- NBMIN = MAX( 2, ILAENV( 2, 'ZUNGQR', ' ', M, N, K, -1 ) )
- END IF
- END IF
- END IF
- *
- IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
- *
- * Use blocked code after the last block.
- * The first kk columns are handled by the block method.
- *
- KI = ( ( K-NX-1 ) / NB )*NB
- KK = MIN( K, KI+NB )
- *
- * Set A(1:kk,kk+1:n) to zero.
- *
- DO 20 J = KK + 1, N
- DO 10 I = 1, KK
- A( I, J ) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- ELSE
- KK = 0
- END IF
- *
- * Use unblocked code for the last or only block.
- *
- IF( KK.LT.N )
- $ CALL ZUNG2R( M-KK, N-KK, K-KK, A( KK+1, KK+1 ), LDA,
- $ TAU( KK+1 ), WORK, IINFO )
- *
- IF( KK.GT.0 ) THEN
- *
- * Use blocked code
- *
- DO 50 I = KI + 1, 1, -NB
- IB = MIN( NB, K-I+1 )
- IF( I+IB.LE.N ) THEN
- *
- * Form the triangular factor of the block reflector
- * H = H(i) H(i+1) . . . H(i+ib-1)
- *
- CALL ZLARFT( 'Forward', 'Columnwise', M-I+1, IB,
- $ A( I, I ), LDA, TAU( I ), WORK, LDWORK )
- *
- * Apply H to A(i:m,i+ib:n) from the left
- *
- CALL ZLARFB( 'Left', 'No transpose', 'Forward',
- $ 'Columnwise', M-I+1, N-I-IB+1, IB,
- $ A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ),
- $ LDA, WORK( IB+1 ), LDWORK )
- END IF
- *
- * Apply H to rows i:m of current block
- *
- CALL ZUNG2R( M-I+1, IB, IB, A( I, I ), LDA, TAU( I ), WORK,
- $ IINFO )
- *
- * Set rows 1:i-1 of current block to zero
- *
- DO 40 J = I, I + IB - 1
- DO 30 L = 1, I - 1
- A( L, J ) = ZERO
- 30 CONTINUE
- 40 CONTINUE
- 50 CONTINUE
- END IF
- *
- WORK( 1 ) = IWS
- RETURN
- *
- * End of ZUNGQR
- *
- END
|