|
- *> \brief \b ZTRSYL
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZTRSYL + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrsyl.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrsyl.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrsyl.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C,
- * LDC, SCALE, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANA, TRANB
- * INTEGER INFO, ISGN, LDA, LDB, LDC, M, N
- * DOUBLE PRECISION SCALE
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZTRSYL solves the complex Sylvester matrix equation:
- *>
- *> op(A)*X + X*op(B) = scale*C or
- *> op(A)*X - X*op(B) = scale*C,
- *>
- *> where op(A) = A or A**H, and A and B are both upper triangular. A is
- *> M-by-M and B is N-by-N; the right hand side C and the solution X are
- *> M-by-N; and scale is an output scale factor, set <= 1 to avoid
- *> overflow in X.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANA
- *> \verbatim
- *> TRANA is CHARACTER*1
- *> Specifies the option op(A):
- *> = 'N': op(A) = A (No transpose)
- *> = 'C': op(A) = A**H (Conjugate transpose)
- *> \endverbatim
- *>
- *> \param[in] TRANB
- *> \verbatim
- *> TRANB is CHARACTER*1
- *> Specifies the option op(B):
- *> = 'N': op(B) = B (No transpose)
- *> = 'C': op(B) = B**H (Conjugate transpose)
- *> \endverbatim
- *>
- *> \param[in] ISGN
- *> \verbatim
- *> ISGN is INTEGER
- *> Specifies the sign in the equation:
- *> = +1: solve op(A)*X + X*op(B) = scale*C
- *> = -1: solve op(A)*X - X*op(B) = scale*C
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The order of the matrix A, and the number of rows in the
- *> matrices X and C. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix B, and the number of columns in the
- *> matrices X and C. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,M)
- *> The upper triangular matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is COMPLEX*16 array, dimension (LDB,N)
- *> The upper triangular matrix B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is COMPLEX*16 array, dimension (LDC,N)
- *> On entry, the M-by-N right hand side matrix C.
- *> On exit, C is overwritten by the solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >= max(1,M)
- *> \endverbatim
- *>
- *> \param[out] SCALE
- *> \verbatim
- *> SCALE is DOUBLE PRECISION
- *> The scale factor, scale, set <= 1 to avoid overflow in X.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> = 1: A and B have common or very close eigenvalues; perturbed
- *> values were used to solve the equation (but the matrices
- *> A and B are unchanged).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16SYcomputational
- *
- * =====================================================================
- SUBROUTINE ZTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C,
- $ LDC, SCALE, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER TRANA, TRANB
- INTEGER INFO, ISGN, LDA, LDB, LDC, M, N
- DOUBLE PRECISION SCALE
- * ..
- * .. Array Arguments ..
- COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE
- PARAMETER ( ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL NOTRNA, NOTRNB
- INTEGER J, K, L
- DOUBLE PRECISION BIGNUM, DA11, DB, EPS, SCALOC, SGN, SMIN,
- $ SMLNUM
- COMPLEX*16 A11, SUML, SUMR, VEC, X11
- * ..
- * .. Local Arrays ..
- DOUBLE PRECISION DUM( 1 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, ZLANGE
- COMPLEX*16 ZDOTC, ZDOTU, ZLADIV
- EXTERNAL LSAME, DLAMCH, ZLANGE, ZDOTC, ZDOTU, ZLADIV
- * ..
- * .. External Subroutines ..
- EXTERNAL DLABAD, XERBLA, ZDSCAL
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Decode and Test input parameters
- *
- NOTRNA = LSAME( TRANA, 'N' )
- NOTRNB = LSAME( TRANB, 'N' )
- *
- INFO = 0
- IF( .NOT.NOTRNA .AND. .NOT.LSAME( TRANA, 'C' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.NOTRNB .AND. .NOT.LSAME( TRANB, 'C' ) ) THEN
- INFO = -2
- ELSE IF( ISGN.NE.1 .AND. ISGN.NE.-1 ) THEN
- INFO = -3
- ELSE IF( M.LT.0 ) THEN
- INFO = -4
- ELSE IF( N.LT.0 ) THEN
- INFO = -5
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -7
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -9
- ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
- INFO = -11
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZTRSYL', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- SCALE = ONE
- IF( M.EQ.0 .OR. N.EQ.0 )
- $ RETURN
- *
- * Set constants to control overflow
- *
- EPS = DLAMCH( 'P' )
- SMLNUM = DLAMCH( 'S' )
- BIGNUM = ONE / SMLNUM
- CALL DLABAD( SMLNUM, BIGNUM )
- SMLNUM = SMLNUM*DBLE( M*N ) / EPS
- BIGNUM = ONE / SMLNUM
- SMIN = MAX( SMLNUM, EPS*ZLANGE( 'M', M, M, A, LDA, DUM ),
- $ EPS*ZLANGE( 'M', N, N, B, LDB, DUM ) )
- SGN = ISGN
- *
- IF( NOTRNA .AND. NOTRNB ) THEN
- *
- * Solve A*X + ISGN*X*B = scale*C.
- *
- * The (K,L)th block of X is determined starting from
- * bottom-left corner column by column by
- *
- * A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
- *
- * Where
- * M L-1
- * R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)].
- * I=K+1 J=1
- *
- DO 30 L = 1, N
- DO 20 K = M, 1, -1
- *
- SUML = ZDOTU( M-K, A( K, MIN( K+1, M ) ), LDA,
- $ C( MIN( K+1, M ), L ), 1 )
- SUMR = ZDOTU( L-1, C( K, 1 ), LDC, B( 1, L ), 1 )
- VEC = C( K, L ) - ( SUML+SGN*SUMR )
- *
- SCALOC = ONE
- A11 = A( K, K ) + SGN*B( L, L )
- DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
- IF( DA11.LE.SMIN ) THEN
- A11 = SMIN
- DA11 = SMIN
- INFO = 1
- END IF
- DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
- IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
- IF( DB.GT.BIGNUM*DA11 )
- $ SCALOC = ONE / DB
- END IF
- X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
- *
- IF( SCALOC.NE.ONE ) THEN
- DO 10 J = 1, N
- CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
- 10 CONTINUE
- SCALE = SCALE*SCALOC
- END IF
- C( K, L ) = X11
- *
- 20 CONTINUE
- 30 CONTINUE
- *
- ELSE IF( .NOT.NOTRNA .AND. NOTRNB ) THEN
- *
- * Solve A**H *X + ISGN*X*B = scale*C.
- *
- * The (K,L)th block of X is determined starting from
- * upper-left corner column by column by
- *
- * A**H(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
- *
- * Where
- * K-1 L-1
- * R(K,L) = SUM [A**H(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)]
- * I=1 J=1
- *
- DO 60 L = 1, N
- DO 50 K = 1, M
- *
- SUML = ZDOTC( K-1, A( 1, K ), 1, C( 1, L ), 1 )
- SUMR = ZDOTU( L-1, C( K, 1 ), LDC, B( 1, L ), 1 )
- VEC = C( K, L ) - ( SUML+SGN*SUMR )
- *
- SCALOC = ONE
- A11 = DCONJG( A( K, K ) ) + SGN*B( L, L )
- DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
- IF( DA11.LE.SMIN ) THEN
- A11 = SMIN
- DA11 = SMIN
- INFO = 1
- END IF
- DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
- IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
- IF( DB.GT.BIGNUM*DA11 )
- $ SCALOC = ONE / DB
- END IF
- *
- X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
- *
- IF( SCALOC.NE.ONE ) THEN
- DO 40 J = 1, N
- CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
- 40 CONTINUE
- SCALE = SCALE*SCALOC
- END IF
- C( K, L ) = X11
- *
- 50 CONTINUE
- 60 CONTINUE
- *
- ELSE IF( .NOT.NOTRNA .AND. .NOT.NOTRNB ) THEN
- *
- * Solve A**H*X + ISGN*X*B**H = C.
- *
- * The (K,L)th block of X is determined starting from
- * upper-right corner column by column by
- *
- * A**H(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L)
- *
- * Where
- * K-1
- * R(K,L) = SUM [A**H(I,K)*X(I,L)] +
- * I=1
- * N
- * ISGN*SUM [X(K,J)*B**H(L,J)].
- * J=L+1
- *
- DO 90 L = N, 1, -1
- DO 80 K = 1, M
- *
- SUML = ZDOTC( K-1, A( 1, K ), 1, C( 1, L ), 1 )
- SUMR = ZDOTC( N-L, C( K, MIN( L+1, N ) ), LDC,
- $ B( L, MIN( L+1, N ) ), LDB )
- VEC = C( K, L ) - ( SUML+SGN*DCONJG( SUMR ) )
- *
- SCALOC = ONE
- A11 = DCONJG( A( K, K )+SGN*B( L, L ) )
- DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
- IF( DA11.LE.SMIN ) THEN
- A11 = SMIN
- DA11 = SMIN
- INFO = 1
- END IF
- DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
- IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
- IF( DB.GT.BIGNUM*DA11 )
- $ SCALOC = ONE / DB
- END IF
- *
- X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
- *
- IF( SCALOC.NE.ONE ) THEN
- DO 70 J = 1, N
- CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
- 70 CONTINUE
- SCALE = SCALE*SCALOC
- END IF
- C( K, L ) = X11
- *
- 80 CONTINUE
- 90 CONTINUE
- *
- ELSE IF( NOTRNA .AND. .NOT.NOTRNB ) THEN
- *
- * Solve A*X + ISGN*X*B**H = C.
- *
- * The (K,L)th block of X is determined starting from
- * bottom-left corner column by column by
- *
- * A(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L)
- *
- * Where
- * M N
- * R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B**H(L,J)]
- * I=K+1 J=L+1
- *
- DO 120 L = N, 1, -1
- DO 110 K = M, 1, -1
- *
- SUML = ZDOTU( M-K, A( K, MIN( K+1, M ) ), LDA,
- $ C( MIN( K+1, M ), L ), 1 )
- SUMR = ZDOTC( N-L, C( K, MIN( L+1, N ) ), LDC,
- $ B( L, MIN( L+1, N ) ), LDB )
- VEC = C( K, L ) - ( SUML+SGN*DCONJG( SUMR ) )
- *
- SCALOC = ONE
- A11 = A( K, K ) + SGN*DCONJG( B( L, L ) )
- DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
- IF( DA11.LE.SMIN ) THEN
- A11 = SMIN
- DA11 = SMIN
- INFO = 1
- END IF
- DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
- IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
- IF( DB.GT.BIGNUM*DA11 )
- $ SCALOC = ONE / DB
- END IF
- *
- X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
- *
- IF( SCALOC.NE.ONE ) THEN
- DO 100 J = 1, N
- CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
- 100 CONTINUE
- SCALE = SCALE*SCALOC
- END IF
- C( K, L ) = X11
- *
- 110 CONTINUE
- 120 CONTINUE
- *
- END IF
- *
- RETURN
- *
- * End of ZTRSYL
- *
- END
|