|
- *> \brief \b ZTPMLQT
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZTPMLQT + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztpmlqt.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztpmlqt.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztpmlqt.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZTPMLQT( SIDE, TRANS, M, N, K, L, MB, V, LDV, T, LDT,
- * A, LDA, B, LDB, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER SIDE, TRANS
- * INTEGER INFO, K, LDV, LDA, LDB, M, N, L, MB, LDT
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 V( LDV, * ), A( LDA, * ), B( LDB, * ),
- * $ T( LDT, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZTPMLQT applies a complex orthogonal matrix Q obtained from a
- *> "triangular-pentagonal" complex block reflector H to a general
- *> complex matrix C, which consists of two blocks A and B.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> = 'L': apply Q or Q**H from the Left;
- *> = 'R': apply Q or Q**H from the Right.
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> = 'N': No transpose, apply Q;
- *> = 'C': Transpose, apply Q**H.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix B. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The number of elementary reflectors whose product defines
- *> the matrix Q.
- *> \endverbatim
- *>
- *> \param[in] L
- *> \verbatim
- *> L is INTEGER
- *> The order of the trapezoidal part of V.
- *> K >= L >= 0. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] MB
- *> \verbatim
- *> MB is INTEGER
- *> The block size used for the storage of T. K >= MB >= 1.
- *> This must be the same value of MB used to generate T
- *> in DTPLQT.
- *> \endverbatim
- *>
- *> \param[in] V
- *> \verbatim
- *> V is COMPLEX*16 array, dimension (LDV,K)
- *> The i-th row must contain the vector which defines the
- *> elementary reflector H(i), for i = 1,2,...,k, as returned by
- *> DTPLQT in B. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDV
- *> \verbatim
- *> LDV is INTEGER
- *> The leading dimension of the array V.
- *> If SIDE = 'L', LDV >= max(1,M);
- *> if SIDE = 'R', LDV >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] T
- *> \verbatim
- *> T is COMPLEX*16 array, dimension (LDT,K)
- *> The upper triangular factors of the block reflectors
- *> as returned by DTPLQT, stored as a MB-by-K matrix.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the array T. LDT >= MB.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension
- *> (LDA,N) if SIDE = 'L' or
- *> (LDA,K) if SIDE = 'R'
- *> On entry, the K-by-N or M-by-K matrix A.
- *> On exit, A is overwritten by the corresponding block of
- *> Q*C or Q**H*C or C*Q or C*Q**H. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A.
- *> If SIDE = 'L', LDC >= max(1,K);
- *> If SIDE = 'R', LDC >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX*16 array, dimension (LDB,N)
- *> On entry, the M-by-N matrix B.
- *> On exit, B is overwritten by the corresponding block of
- *> Q*C or Q**H*C or C*Q or C*Q**H. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B.
- *> LDB >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array. The dimension of WORK is
- *> N*MB if SIDE = 'L', or M*MB if SIDE = 'R'.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date June 2017
- *
- *> \ingroup doubleOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The columns of the pentagonal matrix V contain the elementary reflectors
- *> H(1), H(2), ..., H(K); V is composed of a rectangular block V1 and a
- *> trapezoidal block V2:
- *>
- *> V = [V1] [V2].
- *>
- *>
- *> The size of the trapezoidal block V2 is determined by the parameter L,
- *> where 0 <= L <= K; V2 is lower trapezoidal, consisting of the first L
- *> rows of a K-by-K upper triangular matrix. If L=K, V2 is lower triangular;
- *> if L=0, there is no trapezoidal block, hence V = V1 is rectangular.
- *>
- *> If SIDE = 'L': C = [A] where A is K-by-N, B is M-by-N and V is K-by-M.
- *> [B]
- *>
- *> If SIDE = 'R': C = [A B] where A is M-by-K, B is M-by-N and V is K-by-N.
- *>
- *> The real orthogonal matrix Q is formed from V and T.
- *>
- *> If TRANS='N' and SIDE='L', C is on exit replaced with Q * C.
- *>
- *> If TRANS='C' and SIDE='L', C is on exit replaced with Q**H * C.
- *>
- *> If TRANS='N' and SIDE='R', C is on exit replaced with C * Q.
- *>
- *> If TRANS='C' and SIDE='R', C is on exit replaced with C * Q**H.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE ZTPMLQT( SIDE, TRANS, M, N, K, L, MB, V, LDV, T, LDT,
- $ A, LDA, B, LDB, WORK, INFO )
- *
- * -- LAPACK computational routine (version 3.7.1) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * June 2017
- *
- * .. Scalar Arguments ..
- CHARACTER SIDE, TRANS
- INTEGER INFO, K, LDV, LDA, LDB, M, N, L, MB, LDT
- * ..
- * .. Array Arguments ..
- COMPLEX*16 V( LDV, * ), A( LDA, * ), B( LDB, * ),
- $ T( LDT, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * ..
- * .. Local Scalars ..
- LOGICAL LEFT, RIGHT, TRAN, NOTRAN
- INTEGER I, IB, NB, LB, KF, LDAQ
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZTPRFB
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * .. Test the input arguments ..
- *
- INFO = 0
- LEFT = LSAME( SIDE, 'L' )
- RIGHT = LSAME( SIDE, 'R' )
- TRAN = LSAME( TRANS, 'C' )
- NOTRAN = LSAME( TRANS, 'N' )
- *
- IF ( LEFT ) THEN
- LDAQ = MAX( 1, K )
- ELSE IF ( RIGHT ) THEN
- LDAQ = MAX( 1, M )
- END IF
- IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
- INFO = -1
- ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
- INFO = -2
- ELSE IF( M.LT.0 ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( K.LT.0 ) THEN
- INFO = -5
- ELSE IF( L.LT.0 .OR. L.GT.K ) THEN
- INFO = -6
- ELSE IF( MB.LT.1 .OR. (MB.GT.K .AND. K.GT.0) ) THEN
- INFO = -7
- ELSE IF( LDV.LT.K ) THEN
- INFO = -9
- ELSE IF( LDT.LT.MB ) THEN
- INFO = -11
- ELSE IF( LDA.LT.LDAQ ) THEN
- INFO = -13
- ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
- INFO = -15
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZTPMLQT', -INFO )
- RETURN
- END IF
- *
- * .. Quick return if possible ..
- *
- IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) RETURN
- *
- IF( LEFT .AND. NOTRAN ) THEN
- *
- DO I = 1, K, MB
- IB = MIN( MB, K-I+1 )
- NB = MIN( M-L+I+IB-1, M )
- IF( I.GE.L ) THEN
- LB = 0
- ELSE
- LB = 0
- END IF
- CALL ZTPRFB( 'L', 'C', 'F', 'R', NB, N, IB, LB,
- $ V( I, 1 ), LDV, T( 1, I ), LDT,
- $ A( I, 1 ), LDA, B, LDB, WORK, IB )
- END DO
- *
- ELSE IF( RIGHT .AND. TRAN ) THEN
- *
- DO I = 1, K, MB
- IB = MIN( MB, K-I+1 )
- NB = MIN( N-L+I+IB-1, N )
- IF( I.GE.L ) THEN
- LB = 0
- ELSE
- LB = NB-N+L-I+1
- END IF
- CALL ZTPRFB( 'R', 'N', 'F', 'R', M, NB, IB, LB,
- $ V( I, 1 ), LDV, T( 1, I ), LDT,
- $ A( 1, I ), LDA, B, LDB, WORK, M )
- END DO
- *
- ELSE IF( LEFT .AND. TRAN ) THEN
- *
- KF = ((K-1)/MB)*MB+1
- DO I = KF, 1, -MB
- IB = MIN( MB, K-I+1 )
- NB = MIN( M-L+I+IB-1, M )
- IF( I.GE.L ) THEN
- LB = 0
- ELSE
- LB = 0
- END IF
- CALL ZTPRFB( 'L', 'N', 'F', 'R', NB, N, IB, LB,
- $ V( I, 1 ), LDV, T( 1, I ), LDT,
- $ A( I, 1 ), LDA, B, LDB, WORK, IB )
- END DO
- *
- ELSE IF( RIGHT .AND. NOTRAN ) THEN
- *
- KF = ((K-1)/MB)*MB+1
- DO I = KF, 1, -MB
- IB = MIN( MB, K-I+1 )
- NB = MIN( N-L+I+IB-1, N )
- IF( I.GE.L ) THEN
- LB = 0
- ELSE
- LB = NB-N+L-I+1
- END IF
- CALL ZTPRFB( 'R', 'C', 'F', 'R', M, NB, IB, LB,
- $ V( I, 1 ), LDV, T( 1, I ), LDT,
- $ A( 1, I ), LDA, B, LDB, WORK, M )
- END DO
- *
- END IF
- *
- RETURN
- *
- * End of ZTPMLQT
- *
- END
|