|
- *> \brief \b ZSPMV computes a matrix-vector product for complex vectors using a complex symmetric packed matrix
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZSPMV + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zspmv.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zspmv.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zspmv.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZSPMV( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INCX, INCY, N
- * COMPLEX*16 ALPHA, BETA
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 AP( * ), X( * ), Y( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZSPMV performs the matrix-vector operation
- *>
- *> y := alpha*A*x + beta*y,
- *>
- *> where alpha and beta are scalars, x and y are n element vectors and
- *> A is an n by n symmetric matrix, supplied in packed form.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> On entry, UPLO specifies whether the upper or lower
- *> triangular part of the matrix A is supplied in the packed
- *> array AP as follows:
- *>
- *> UPLO = 'U' or 'u' The upper triangular part of A is
- *> supplied in AP.
- *>
- *> UPLO = 'L' or 'l' The lower triangular part of A is
- *> supplied in AP.
- *>
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the order of the matrix A.
- *> N must be at least zero.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] ALPHA
- *> \verbatim
- *> ALPHA is COMPLEX*16
- *> On entry, ALPHA specifies the scalar alpha.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] AP
- *> \verbatim
- *> AP is COMPLEX*16 array, dimension at least
- *> ( ( N*( N + 1 ) )/2 ).
- *> Before entry, with UPLO = 'U' or 'u', the array AP must
- *> contain the upper triangular part of the symmetric matrix
- *> packed sequentially, column by column, so that AP( 1 )
- *> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
- *> and a( 2, 2 ) respectively, and so on.
- *> Before entry, with UPLO = 'L' or 'l', the array AP must
- *> contain the lower triangular part of the symmetric matrix
- *> packed sequentially, column by column, so that AP( 1 )
- *> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
- *> and a( 3, 1 ) respectively, and so on.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is COMPLEX*16 array, dimension at least
- *> ( 1 + ( N - 1 )*abs( INCX ) ).
- *> Before entry, the incremented array X must contain the N-
- *> element vector x.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> On entry, INCX specifies the increment for the elements of
- *> X. INCX must not be zero.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] BETA
- *> \verbatim
- *> BETA is COMPLEX*16
- *> On entry, BETA specifies the scalar beta. When BETA is
- *> supplied as zero then Y need not be set on input.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in,out] Y
- *> \verbatim
- *> Y is COMPLEX*16 array, dimension at least
- *> ( 1 + ( N - 1 )*abs( INCY ) ).
- *> Before entry, the incremented array Y must contain the n
- *> element vector y. On exit, Y is overwritten by the updated
- *> vector y.
- *> \endverbatim
- *>
- *> \param[in] INCY
- *> \verbatim
- *> INCY is INTEGER
- *> On entry, INCY specifies the increment for the elements of
- *> Y. INCY must not be zero.
- *> Unchanged on exit.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16OTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE ZSPMV( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INCX, INCY, N
- COMPLEX*16 ALPHA, BETA
- * ..
- * .. Array Arguments ..
- COMPLEX*16 AP( * ), X( * ), Y( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ONE
- PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
- COMPLEX*16 ZERO
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY
- COMPLEX*16 TEMP1, TEMP2
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = 1
- ELSE IF( N.LT.0 ) THEN
- INFO = 2
- ELSE IF( INCX.EQ.0 ) THEN
- INFO = 6
- ELSE IF( INCY.EQ.0 ) THEN
- INFO = 9
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZSPMV ', INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) )
- $ RETURN
- *
- * Set up the start points in X and Y.
- *
- IF( INCX.GT.0 ) THEN
- KX = 1
- ELSE
- KX = 1 - ( N-1 )*INCX
- END IF
- IF( INCY.GT.0 ) THEN
- KY = 1
- ELSE
- KY = 1 - ( N-1 )*INCY
- END IF
- *
- * Start the operations. In this version the elements of the array AP
- * are accessed sequentially with one pass through AP.
- *
- * First form y := beta*y.
- *
- IF( BETA.NE.ONE ) THEN
- IF( INCY.EQ.1 ) THEN
- IF( BETA.EQ.ZERO ) THEN
- DO 10 I = 1, N
- Y( I ) = ZERO
- 10 CONTINUE
- ELSE
- DO 20 I = 1, N
- Y( I ) = BETA*Y( I )
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF( BETA.EQ.ZERO ) THEN
- DO 30 I = 1, N
- Y( IY ) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40 I = 1, N
- Y( IY ) = BETA*Y( IY )
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF( ALPHA.EQ.ZERO )
- $ RETURN
- KK = 1
- IF( LSAME( UPLO, 'U' ) ) THEN
- *
- * Form y when AP contains the upper triangle.
- *
- IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
- DO 60 J = 1, N
- TEMP1 = ALPHA*X( J )
- TEMP2 = ZERO
- K = KK
- DO 50 I = 1, J - 1
- Y( I ) = Y( I ) + TEMP1*AP( K )
- TEMP2 = TEMP2 + AP( K )*X( I )
- K = K + 1
- 50 CONTINUE
- Y( J ) = Y( J ) + TEMP1*AP( KK+J-1 ) + ALPHA*TEMP2
- KK = KK + J
- 60 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 80 J = 1, N
- TEMP1 = ALPHA*X( JX )
- TEMP2 = ZERO
- IX = KX
- IY = KY
- DO 70 K = KK, KK + J - 2
- Y( IY ) = Y( IY ) + TEMP1*AP( K )
- TEMP2 = TEMP2 + AP( K )*X( IX )
- IX = IX + INCX
- IY = IY + INCY
- 70 CONTINUE
- Y( JY ) = Y( JY ) + TEMP1*AP( KK+J-1 ) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- KK = KK + J
- 80 CONTINUE
- END IF
- ELSE
- *
- * Form y when AP contains the lower triangle.
- *
- IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
- DO 100 J = 1, N
- TEMP1 = ALPHA*X( J )
- TEMP2 = ZERO
- Y( J ) = Y( J ) + TEMP1*AP( KK )
- K = KK + 1
- DO 90 I = J + 1, N
- Y( I ) = Y( I ) + TEMP1*AP( K )
- TEMP2 = TEMP2 + AP( K )*X( I )
- K = K + 1
- 90 CONTINUE
- Y( J ) = Y( J ) + ALPHA*TEMP2
- KK = KK + ( N-J+1 )
- 100 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 120 J = 1, N
- TEMP1 = ALPHA*X( JX )
- TEMP2 = ZERO
- Y( JY ) = Y( JY ) + TEMP1*AP( KK )
- IX = JX
- IY = JY
- DO 110 K = KK + 1, KK + N - J
- IX = IX + INCX
- IY = IY + INCY
- Y( IY ) = Y( IY ) + TEMP1*AP( K )
- TEMP2 = TEMP2 + AP( K )*X( IX )
- 110 CONTINUE
- Y( JY ) = Y( JY ) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- KK = KK + ( N-J+1 )
- 120 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of ZSPMV
- *
- END
|