|
- *> \brief \b ZLAR2V applies a vector of plane rotations with real cosines and complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZLAR2V + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlar2v.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlar2v.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlar2v.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZLAR2V( N, X, Y, Z, INCX, C, S, INCC )
- *
- * .. Scalar Arguments ..
- * INTEGER INCC, INCX, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION C( * )
- * COMPLEX*16 S( * ), X( * ), Y( * ), Z( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZLAR2V applies a vector of complex plane rotations with real cosines
- *> from both sides to a sequence of 2-by-2 complex Hermitian matrices,
- *> defined by the elements of the vectors x, y and z. For i = 1,2,...,n
- *>
- *> ( x(i) z(i) ) :=
- *> ( conjg(z(i)) y(i) )
- *>
- *> ( c(i) conjg(s(i)) ) ( x(i) z(i) ) ( c(i) -conjg(s(i)) )
- *> ( -s(i) c(i) ) ( conjg(z(i)) y(i) ) ( s(i) c(i) )
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of plane rotations to be applied.
- *> \endverbatim
- *>
- *> \param[in,out] X
- *> \verbatim
- *> X is COMPLEX*16 array, dimension (1+(N-1)*INCX)
- *> The vector x; the elements of x are assumed to be real.
- *> \endverbatim
- *>
- *> \param[in,out] Y
- *> \verbatim
- *> Y is COMPLEX*16 array, dimension (1+(N-1)*INCX)
- *> The vector y; the elements of y are assumed to be real.
- *> \endverbatim
- *>
- *> \param[in,out] Z
- *> \verbatim
- *> Z is COMPLEX*16 array, dimension (1+(N-1)*INCX)
- *> The vector z.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> The increment between elements of X, Y and Z. INCX > 0.
- *> \endverbatim
- *>
- *> \param[in] C
- *> \verbatim
- *> C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
- *> The cosines of the plane rotations.
- *> \endverbatim
- *>
- *> \param[in] S
- *> \verbatim
- *> S is COMPLEX*16 array, dimension (1+(N-1)*INCC)
- *> The sines of the plane rotations.
- *> \endverbatim
- *>
- *> \param[in] INCC
- *> \verbatim
- *> INCC is INTEGER
- *> The increment between elements of C and S. INCC > 0.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16OTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE ZLAR2V( N, X, Y, Z, INCX, C, S, INCC )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INCC, INCX, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION C( * )
- COMPLEX*16 S( * ), X( * ), Y( * ), Z( * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- INTEGER I, IC, IX
- DOUBLE PRECISION CI, SII, SIR, T1I, T1R, T5, T6, XI, YI, ZII,
- $ ZIR
- COMPLEX*16 SI, T2, T3, T4, ZI
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, DCMPLX, DCONJG, DIMAG
- * ..
- * .. Executable Statements ..
- *
- IX = 1
- IC = 1
- DO 10 I = 1, N
- XI = DBLE( X( IX ) )
- YI = DBLE( Y( IX ) )
- ZI = Z( IX )
- ZIR = DBLE( ZI )
- ZII = DIMAG( ZI )
- CI = C( IC )
- SI = S( IC )
- SIR = DBLE( SI )
- SII = DIMAG( SI )
- T1R = SIR*ZIR - SII*ZII
- T1I = SIR*ZII + SII*ZIR
- T2 = CI*ZI
- T3 = T2 - DCONJG( SI )*XI
- T4 = DCONJG( T2 ) + SI*YI
- T5 = CI*XI + T1R
- T6 = CI*YI - T1R
- X( IX ) = CI*T5 + ( SIR*DBLE( T4 )+SII*DIMAG( T4 ) )
- Y( IX ) = CI*T6 - ( SIR*DBLE( T3 )-SII*DIMAG( T3 ) )
- Z( IX ) = CI*T3 + DCONJG( SI )*DCMPLX( T6, T1I )
- IX = IX + INCX
- IC = IC + INCC
- 10 CONTINUE
- RETURN
- *
- * End of ZLAR2V
- *
- END
|