|
- *> \brief \b ZLAQR2 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZLAQR2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
- * IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
- * NV, WV, LDWV, WORK, LWORK )
- *
- * .. Scalar Arguments ..
- * INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
- * $ LDZ, LWORK, N, ND, NH, NS, NV, NW
- * LOGICAL WANTT, WANTZ
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
- * $ WORK( * ), WV( LDWV, * ), Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZLAQR2 is identical to ZLAQR3 except that it avoids
- *> recursion by calling ZLAHQR instead of ZLAQR4.
- *>
- *> Aggressive early deflation:
- *>
- *> ZLAQR2 accepts as input an upper Hessenberg matrix
- *> H and performs an unitary similarity transformation
- *> designed to detect and deflate fully converged eigenvalues from
- *> a trailing principal submatrix. On output H has been over-
- *> written by a new Hessenberg matrix that is a perturbation of
- *> an unitary similarity transformation of H. It is to be
- *> hoped that the final version of H has many zero subdiagonal
- *> entries.
- *>
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] WANTT
- *> \verbatim
- *> WANTT is LOGICAL
- *> If .TRUE., then the Hessenberg matrix H is fully updated
- *> so that the triangular Schur factor may be
- *> computed (in cooperation with the calling subroutine).
- *> If .FALSE., then only enough of H is updated to preserve
- *> the eigenvalues.
- *> \endverbatim
- *>
- *> \param[in] WANTZ
- *> \verbatim
- *> WANTZ is LOGICAL
- *> If .TRUE., then the unitary matrix Z is updated so
- *> so that the unitary Schur factor may be computed
- *> (in cooperation with the calling subroutine).
- *> If .FALSE., then Z is not referenced.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix H and (if WANTZ is .TRUE.) the
- *> order of the unitary matrix Z.
- *> \endverbatim
- *>
- *> \param[in] KTOP
- *> \verbatim
- *> KTOP is INTEGER
- *> It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
- *> KBOT and KTOP together determine an isolated block
- *> along the diagonal of the Hessenberg matrix.
- *> \endverbatim
- *>
- *> \param[in] KBOT
- *> \verbatim
- *> KBOT is INTEGER
- *> It is assumed without a check that either
- *> KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
- *> determine an isolated block along the diagonal of the
- *> Hessenberg matrix.
- *> \endverbatim
- *>
- *> \param[in] NW
- *> \verbatim
- *> NW is INTEGER
- *> Deflation window size. 1 <= NW <= (KBOT-KTOP+1).
- *> \endverbatim
- *>
- *> \param[in,out] H
- *> \verbatim
- *> H is COMPLEX*16 array, dimension (LDH,N)
- *> On input the initial N-by-N section of H stores the
- *> Hessenberg matrix undergoing aggressive early deflation.
- *> On output H has been transformed by a unitary
- *> similarity transformation, perturbed, and the returned
- *> to Hessenberg form that (it is to be hoped) has some
- *> zero subdiagonal entries.
- *> \endverbatim
- *>
- *> \param[in] LDH
- *> \verbatim
- *> LDH is INTEGER
- *> Leading dimension of H just as declared in the calling
- *> subroutine. N <= LDH
- *> \endverbatim
- *>
- *> \param[in] ILOZ
- *> \verbatim
- *> ILOZ is INTEGER
- *> \endverbatim
- *>
- *> \param[in] IHIZ
- *> \verbatim
- *> IHIZ is INTEGER
- *> Specify the rows of Z to which transformations must be
- *> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
- *> \endverbatim
- *>
- *> \param[in,out] Z
- *> \verbatim
- *> Z is COMPLEX*16 array, dimension (LDZ,N)
- *> IF WANTZ is .TRUE., then on output, the unitary
- *> similarity transformation mentioned above has been
- *> accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
- *> If WANTZ is .FALSE., then Z is unreferenced.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of Z just as declared in the
- *> calling subroutine. 1 <= LDZ.
- *> \endverbatim
- *>
- *> \param[out] NS
- *> \verbatim
- *> NS is INTEGER
- *> The number of unconverged (ie approximate) eigenvalues
- *> returned in SR and SI that may be used as shifts by the
- *> calling subroutine.
- *> \endverbatim
- *>
- *> \param[out] ND
- *> \verbatim
- *> ND is INTEGER
- *> The number of converged eigenvalues uncovered by this
- *> subroutine.
- *> \endverbatim
- *>
- *> \param[out] SH
- *> \verbatim
- *> SH is COMPLEX*16 array, dimension (KBOT)
- *> On output, approximate eigenvalues that may
- *> be used for shifts are stored in SH(KBOT-ND-NS+1)
- *> through SR(KBOT-ND). Converged eigenvalues are
- *> stored in SH(KBOT-ND+1) through SH(KBOT).
- *> \endverbatim
- *>
- *> \param[out] V
- *> \verbatim
- *> V is COMPLEX*16 array, dimension (LDV,NW)
- *> An NW-by-NW work array.
- *> \endverbatim
- *>
- *> \param[in] LDV
- *> \verbatim
- *> LDV is INTEGER
- *> The leading dimension of V just as declared in the
- *> calling subroutine. NW <= LDV
- *> \endverbatim
- *>
- *> \param[in] NH
- *> \verbatim
- *> NH is INTEGER
- *> The number of columns of T. NH >= NW.
- *> \endverbatim
- *>
- *> \param[out] T
- *> \verbatim
- *> T is COMPLEX*16 array, dimension (LDT,NW)
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of T just as declared in the
- *> calling subroutine. NW <= LDT
- *> \endverbatim
- *>
- *> \param[in] NV
- *> \verbatim
- *> NV is INTEGER
- *> The number of rows of work array WV available for
- *> workspace. NV >= NW.
- *> \endverbatim
- *>
- *> \param[out] WV
- *> \verbatim
- *> WV is COMPLEX*16 array, dimension (LDWV,NW)
- *> \endverbatim
- *>
- *> \param[in] LDWV
- *> \verbatim
- *> LDWV is INTEGER
- *> The leading dimension of W just as declared in the
- *> calling subroutine. NW <= LDV
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (LWORK)
- *> On exit, WORK(1) is set to an estimate of the optimal value
- *> of LWORK for the given values of N, NW, KTOP and KBOT.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the work array WORK. LWORK = 2*NW
- *> suffices, but greater efficiency may result from larger
- *> values of LWORK.
- *>
- *> If LWORK = -1, then a workspace query is assumed; ZLAQR2
- *> only estimates the optimal workspace size for the given
- *> values of N, NW, KTOP and KBOT. The estimate is returned
- *> in WORK(1). No error message related to LWORK is issued
- *> by XERBLA. Neither H nor Z are accessed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date June 2017
- *
- *> \ingroup complex16OTHERauxiliary
- *
- *> \par Contributors:
- * ==================
- *>
- *> Karen Braman and Ralph Byers, Department of Mathematics,
- *> University of Kansas, USA
- *>
- * =====================================================================
- SUBROUTINE ZLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
- $ IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
- $ NV, WV, LDWV, WORK, LWORK )
- *
- * -- LAPACK auxiliary routine (version 3.7.1) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * June 2017
- *
- * .. Scalar Arguments ..
- INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
- $ LDZ, LWORK, N, ND, NH, NS, NV, NW
- LOGICAL WANTT, WANTZ
- * ..
- * .. Array Arguments ..
- COMPLEX*16 H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
- $ WORK( * ), WV( LDWV, * ), Z( LDZ, * )
- * ..
- *
- * ================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ZERO, ONE
- PARAMETER ( ZERO = ( 0.0d0, 0.0d0 ),
- $ ONE = ( 1.0d0, 0.0d0 ) )
- DOUBLE PRECISION RZERO, RONE
- PARAMETER ( RZERO = 0.0d0, RONE = 1.0d0 )
- * ..
- * .. Local Scalars ..
- COMPLEX*16 BETA, CDUM, S, TAU
- DOUBLE PRECISION FOO, SAFMAX, SAFMIN, SMLNUM, ULP
- INTEGER I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN,
- $ KNT, KROW, KWTOP, LTOP, LWK1, LWK2, LWKOPT
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DLAMCH
- EXTERNAL DLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL DLABAD, ZCOPY, ZGEHRD, ZGEMM, ZLACPY, ZLAHQR,
- $ ZLARF, ZLARFG, ZLASET, ZTREXC, ZUNMHR
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, MAX, MIN
- * ..
- * .. Statement Functions ..
- DOUBLE PRECISION CABS1
- * ..
- * .. Statement Function definitions ..
- CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
- * ..
- * .. Executable Statements ..
- *
- * ==== Estimate optimal workspace. ====
- *
- JW = MIN( NW, KBOT-KTOP+1 )
- IF( JW.LE.2 ) THEN
- LWKOPT = 1
- ELSE
- *
- * ==== Workspace query call to ZGEHRD ====
- *
- CALL ZGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
- LWK1 = INT( WORK( 1 ) )
- *
- * ==== Workspace query call to ZUNMHR ====
- *
- CALL ZUNMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
- $ WORK, -1, INFO )
- LWK2 = INT( WORK( 1 ) )
- *
- * ==== Optimal workspace ====
- *
- LWKOPT = JW + MAX( LWK1, LWK2 )
- END IF
- *
- * ==== Quick return in case of workspace query. ====
- *
- IF( LWORK.EQ.-1 ) THEN
- WORK( 1 ) = DCMPLX( LWKOPT, 0 )
- RETURN
- END IF
- *
- * ==== Nothing to do ...
- * ... for an empty active block ... ====
- NS = 0
- ND = 0
- WORK( 1 ) = ONE
- IF( KTOP.GT.KBOT )
- $ RETURN
- * ... nor for an empty deflation window. ====
- IF( NW.LT.1 )
- $ RETURN
- *
- * ==== Machine constants ====
- *
- SAFMIN = DLAMCH( 'SAFE MINIMUM' )
- SAFMAX = RONE / SAFMIN
- CALL DLABAD( SAFMIN, SAFMAX )
- ULP = DLAMCH( 'PRECISION' )
- SMLNUM = SAFMIN*( DBLE( N ) / ULP )
- *
- * ==== Setup deflation window ====
- *
- JW = MIN( NW, KBOT-KTOP+1 )
- KWTOP = KBOT - JW + 1
- IF( KWTOP.EQ.KTOP ) THEN
- S = ZERO
- ELSE
- S = H( KWTOP, KWTOP-1 )
- END IF
- *
- IF( KBOT.EQ.KWTOP ) THEN
- *
- * ==== 1-by-1 deflation window: not much to do ====
- *
- SH( KWTOP ) = H( KWTOP, KWTOP )
- NS = 1
- ND = 0
- IF( CABS1( S ).LE.MAX( SMLNUM, ULP*CABS1( H( KWTOP,
- $ KWTOP ) ) ) ) THEN
- NS = 0
- ND = 1
- IF( KWTOP.GT.KTOP )
- $ H( KWTOP, KWTOP-1 ) = ZERO
- END IF
- WORK( 1 ) = ONE
- RETURN
- END IF
- *
- * ==== Convert to spike-triangular form. (In case of a
- * . rare QR failure, this routine continues to do
- * . aggressive early deflation using that part of
- * . the deflation window that converged using INFQR
- * . here and there to keep track.) ====
- *
- CALL ZLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
- CALL ZCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
- *
- CALL ZLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
- CALL ZLAHQR( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
- $ JW, V, LDV, INFQR )
- *
- * ==== Deflation detection loop ====
- *
- NS = JW
- ILST = INFQR + 1
- DO 10 KNT = INFQR + 1, JW
- *
- * ==== Small spike tip deflation test ====
- *
- FOO = CABS1( T( NS, NS ) )
- IF( FOO.EQ.RZERO )
- $ FOO = CABS1( S )
- IF( CABS1( S )*CABS1( V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) )
- $ THEN
- *
- * ==== One more converged eigenvalue ====
- *
- NS = NS - 1
- ELSE
- *
- * ==== One undeflatable eigenvalue. Move it up out of the
- * . way. (ZTREXC can not fail in this case.) ====
- *
- IFST = NS
- CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
- ILST = ILST + 1
- END IF
- 10 CONTINUE
- *
- * ==== Return to Hessenberg form ====
- *
- IF( NS.EQ.0 )
- $ S = ZERO
- *
- IF( NS.LT.JW ) THEN
- *
- * ==== sorting the diagonal of T improves accuracy for
- * . graded matrices. ====
- *
- DO 30 I = INFQR + 1, NS
- IFST = I
- DO 20 J = I + 1, NS
- IF( CABS1( T( J, J ) ).GT.CABS1( T( IFST, IFST ) ) )
- $ IFST = J
- 20 CONTINUE
- ILST = I
- IF( IFST.NE.ILST )
- $ CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
- 30 CONTINUE
- END IF
- *
- * ==== Restore shift/eigenvalue array from T ====
- *
- DO 40 I = INFQR + 1, JW
- SH( KWTOP+I-1 ) = T( I, I )
- 40 CONTINUE
- *
- *
- IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
- IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
- *
- * ==== Reflect spike back into lower triangle ====
- *
- CALL ZCOPY( NS, V, LDV, WORK, 1 )
- DO 50 I = 1, NS
- WORK( I ) = DCONJG( WORK( I ) )
- 50 CONTINUE
- BETA = WORK( 1 )
- CALL ZLARFG( NS, BETA, WORK( 2 ), 1, TAU )
- WORK( 1 ) = ONE
- *
- CALL ZLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
- *
- CALL ZLARF( 'L', NS, JW, WORK, 1, DCONJG( TAU ), T, LDT,
- $ WORK( JW+1 ) )
- CALL ZLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
- $ WORK( JW+1 ) )
- CALL ZLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
- $ WORK( JW+1 ) )
- *
- CALL ZGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
- $ LWORK-JW, INFO )
- END IF
- *
- * ==== Copy updated reduced window into place ====
- *
- IF( KWTOP.GT.1 )
- $ H( KWTOP, KWTOP-1 ) = S*DCONJG( V( 1, 1 ) )
- CALL ZLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
- CALL ZCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
- $ LDH+1 )
- *
- * ==== Accumulate orthogonal matrix in order update
- * . H and Z, if requested. ====
- *
- IF( NS.GT.1 .AND. S.NE.ZERO )
- $ CALL ZUNMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
- $ WORK( JW+1 ), LWORK-JW, INFO )
- *
- * ==== Update vertical slab in H ====
- *
- IF( WANTT ) THEN
- LTOP = 1
- ELSE
- LTOP = KTOP
- END IF
- DO 60 KROW = LTOP, KWTOP - 1, NV
- KLN = MIN( NV, KWTOP-KROW )
- CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
- $ LDH, V, LDV, ZERO, WV, LDWV )
- CALL ZLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
- 60 CONTINUE
- *
- * ==== Update horizontal slab in H ====
- *
- IF( WANTT ) THEN
- DO 70 KCOL = KBOT + 1, N, NH
- KLN = MIN( NH, N-KCOL+1 )
- CALL ZGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
- $ H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
- CALL ZLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
- $ LDH )
- 70 CONTINUE
- END IF
- *
- * ==== Update vertical slab in Z ====
- *
- IF( WANTZ ) THEN
- DO 80 KROW = ILOZ, IHIZ, NV
- KLN = MIN( NV, IHIZ-KROW+1 )
- CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
- $ LDZ, V, LDV, ZERO, WV, LDWV )
- CALL ZLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
- $ LDZ )
- 80 CONTINUE
- END IF
- END IF
- *
- * ==== Return the number of deflations ... ====
- *
- ND = JW - NS
- *
- * ==== ... and the number of shifts. (Subtracting
- * . INFQR from the spike length takes care
- * . of the case of a rare QR failure while
- * . calculating eigenvalues of the deflation
- * . window.) ====
- *
- NS = NS - INFQR
- *
- * ==== Return optimal workspace. ====
- *
- WORK( 1 ) = DCMPLX( LWKOPT, 0 )
- *
- * ==== End of ZLAQR2 ====
- *
- END
|