|
- *> \brief \b ZLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZLANTR + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlantr.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlantr.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlantr.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * DOUBLE PRECISION FUNCTION ZLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
- * WORK )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIAG, NORM, UPLO
- * INTEGER LDA, M, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION WORK( * )
- * COMPLEX*16 A( LDA, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZLANTR returns the value of the one norm, or the Frobenius norm, or
- *> the infinity norm, or the element of largest absolute value of a
- *> trapezoidal or triangular matrix A.
- *> \endverbatim
- *>
- *> \return ZLANTR
- *> \verbatim
- *>
- *> ZLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
- *> (
- *> ( norm1(A), NORM = '1', 'O' or 'o'
- *> (
- *> ( normI(A), NORM = 'I' or 'i'
- *> (
- *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
- *>
- *> where norm1 denotes the one norm of a matrix (maximum column sum),
- *> normI denotes the infinity norm of a matrix (maximum row sum) and
- *> normF denotes the Frobenius norm of a matrix (square root of sum of
- *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NORM
- *> \verbatim
- *> NORM is CHARACTER*1
- *> Specifies the value to be returned in ZLANTR as described
- *> above.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the matrix A is upper or lower trapezoidal.
- *> = 'U': Upper trapezoidal
- *> = 'L': Lower trapezoidal
- *> Note that A is triangular instead of trapezoidal if M = N.
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> Specifies whether or not the matrix A has unit diagonal.
- *> = 'N': Non-unit diagonal
- *> = 'U': Unit diagonal
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0, and if
- *> UPLO = 'U', M <= N. When M = 0, ZLANTR is set to zero.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0, and if
- *> UPLO = 'L', N <= M. When N = 0, ZLANTR is set to zero.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> The trapezoidal matrix A (A is triangular if M = N).
- *> If UPLO = 'U', the leading m by n upper trapezoidal part of
- *> the array A contains the upper trapezoidal matrix, and the
- *> strictly lower triangular part of A is not referenced.
- *> If UPLO = 'L', the leading m by n lower trapezoidal part of
- *> the array A contains the lower trapezoidal matrix, and the
- *> strictly upper triangular part of A is not referenced. Note
- *> that when DIAG = 'U', the diagonal elements of A are not
- *> referenced and are assumed to be one.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(M,1).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
- *> where LWORK >= M when NORM = 'I'; otherwise, WORK is not
- *> referenced.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16OTHERauxiliary
- *
- * =====================================================================
- DOUBLE PRECISION FUNCTION ZLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
- $ WORK )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- IMPLICIT NONE
- * .. Scalar Arguments ..
- CHARACTER DIAG, NORM, UPLO
- INTEGER LDA, M, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION WORK( * )
- COMPLEX*16 A( LDA, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UDIAG
- INTEGER I, J
- DOUBLE PRECISION SUM, VALUE
- * ..
- * .. Local Arrays ..
- DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME, DISNAN
- EXTERNAL LSAME, DISNAN
- * ..
- * .. External Subroutines ..
- EXTERNAL ZLASSQ, DCOMBSSQ
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- IF( MIN( M, N ).EQ.0 ) THEN
- VALUE = ZERO
- ELSE IF( LSAME( NORM, 'M' ) ) THEN
- *
- * Find max(abs(A(i,j))).
- *
- IF( LSAME( DIAG, 'U' ) ) THEN
- VALUE = ONE
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO 20 J = 1, N
- DO 10 I = 1, MIN( M, J-1 )
- SUM = ABS( A( I, J ) )
- IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
- 10 CONTINUE
- 20 CONTINUE
- ELSE
- DO 40 J = 1, N
- DO 30 I = J + 1, M
- SUM = ABS( A( I, J ) )
- IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
- 30 CONTINUE
- 40 CONTINUE
- END IF
- ELSE
- VALUE = ZERO
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO 60 J = 1, N
- DO 50 I = 1, MIN( M, J )
- SUM = ABS( A( I, J ) )
- IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
- 50 CONTINUE
- 60 CONTINUE
- ELSE
- DO 80 J = 1, N
- DO 70 I = J, M
- SUM = ABS( A( I, J ) )
- IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
- 70 CONTINUE
- 80 CONTINUE
- END IF
- END IF
- ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
- *
- * Find norm1(A).
- *
- VALUE = ZERO
- UDIAG = LSAME( DIAG, 'U' )
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO 110 J = 1, N
- IF( ( UDIAG ) .AND. ( J.LE.M ) ) THEN
- SUM = ONE
- DO 90 I = 1, J - 1
- SUM = SUM + ABS( A( I, J ) )
- 90 CONTINUE
- ELSE
- SUM = ZERO
- DO 100 I = 1, MIN( M, J )
- SUM = SUM + ABS( A( I, J ) )
- 100 CONTINUE
- END IF
- IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
- 110 CONTINUE
- ELSE
- DO 140 J = 1, N
- IF( UDIAG ) THEN
- SUM = ONE
- DO 120 I = J + 1, M
- SUM = SUM + ABS( A( I, J ) )
- 120 CONTINUE
- ELSE
- SUM = ZERO
- DO 130 I = J, M
- SUM = SUM + ABS( A( I, J ) )
- 130 CONTINUE
- END IF
- IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
- 140 CONTINUE
- END IF
- ELSE IF( LSAME( NORM, 'I' ) ) THEN
- *
- * Find normI(A).
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- IF( LSAME( DIAG, 'U' ) ) THEN
- DO 150 I = 1, M
- WORK( I ) = ONE
- 150 CONTINUE
- DO 170 J = 1, N
- DO 160 I = 1, MIN( M, J-1 )
- WORK( I ) = WORK( I ) + ABS( A( I, J ) )
- 160 CONTINUE
- 170 CONTINUE
- ELSE
- DO 180 I = 1, M
- WORK( I ) = ZERO
- 180 CONTINUE
- DO 200 J = 1, N
- DO 190 I = 1, MIN( M, J )
- WORK( I ) = WORK( I ) + ABS( A( I, J ) )
- 190 CONTINUE
- 200 CONTINUE
- END IF
- ELSE
- IF( LSAME( DIAG, 'U' ) ) THEN
- DO 210 I = 1, MIN( M, N )
- WORK( I ) = ONE
- 210 CONTINUE
- DO 220 I = N + 1, M
- WORK( I ) = ZERO
- 220 CONTINUE
- DO 240 J = 1, N
- DO 230 I = J + 1, M
- WORK( I ) = WORK( I ) + ABS( A( I, J ) )
- 230 CONTINUE
- 240 CONTINUE
- ELSE
- DO 250 I = 1, M
- WORK( I ) = ZERO
- 250 CONTINUE
- DO 270 J = 1, N
- DO 260 I = J, M
- WORK( I ) = WORK( I ) + ABS( A( I, J ) )
- 260 CONTINUE
- 270 CONTINUE
- END IF
- END IF
- VALUE = ZERO
- DO 280 I = 1, M
- SUM = WORK( I )
- IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
- 280 CONTINUE
- ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
- *
- * Find normF(A).
- * SSQ(1) is scale
- * SSQ(2) is sum-of-squares
- * For better accuracy, sum each column separately.
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- IF( LSAME( DIAG, 'U' ) ) THEN
- SSQ( 1 ) = ONE
- SSQ( 2 ) = MIN( M, N )
- DO 290 J = 2, N
- COLSSQ( 1 ) = ZERO
- COLSSQ( 2 ) = ONE
- CALL ZLASSQ( MIN( M, J-1 ), A( 1, J ), 1,
- $ COLSSQ( 1 ), COLSSQ( 2 ) )
- CALL DCOMBSSQ( SSQ, COLSSQ )
- 290 CONTINUE
- ELSE
- SSQ( 1 ) = ZERO
- SSQ( 2 ) = ONE
- DO 300 J = 1, N
- COLSSQ( 1 ) = ZERO
- COLSSQ( 2 ) = ONE
- CALL ZLASSQ( MIN( M, J ), A( 1, J ), 1,
- $ COLSSQ( 1 ), COLSSQ( 2 ) )
- CALL DCOMBSSQ( SSQ, COLSSQ )
- 300 CONTINUE
- END IF
- ELSE
- IF( LSAME( DIAG, 'U' ) ) THEN
- SSQ( 1 ) = ONE
- SSQ( 2 ) = MIN( M, N )
- DO 310 J = 1, N
- COLSSQ( 1 ) = ZERO
- COLSSQ( 2 ) = ONE
- CALL ZLASSQ( M-J, A( MIN( M, J+1 ), J ), 1,
- $ COLSSQ( 1 ), COLSSQ( 2 ) )
- CALL DCOMBSSQ( SSQ, COLSSQ )
- 310 CONTINUE
- ELSE
- SSQ( 1 ) = ZERO
- SSQ( 2 ) = ONE
- DO 320 J = 1, N
- COLSSQ( 1 ) = ZERO
- COLSSQ( 2 ) = ONE
- CALL ZLASSQ( M-J+1, A( J, J ), 1,
- $ COLSSQ( 1 ), COLSSQ( 2 ) )
- CALL DCOMBSSQ( SSQ, COLSSQ )
- 320 CONTINUE
- END IF
- END IF
- VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
- END IF
- *
- ZLANTR = VALUE
- RETURN
- *
- * End of ZLANTR
- *
- END
|