|
- *> \brief \b ZLAGS2
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZLAGS2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlags2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlags2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlags2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV,
- * SNV, CSQ, SNQ )
- *
- * .. Scalar Arguments ..
- * LOGICAL UPPER
- * DOUBLE PRECISION A1, A3, B1, B3, CSQ, CSU, CSV
- * COMPLEX*16 A2, B2, SNQ, SNU, SNV
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZLAGS2 computes 2-by-2 unitary matrices U, V and Q, such
- *> that if ( UPPER ) then
- *>
- *> U**H *A*Q = U**H *( A1 A2 )*Q = ( x 0 )
- *> ( 0 A3 ) ( x x )
- *> and
- *> V**H*B*Q = V**H *( B1 B2 )*Q = ( x 0 )
- *> ( 0 B3 ) ( x x )
- *>
- *> or if ( .NOT.UPPER ) then
- *>
- *> U**H *A*Q = U**H *( A1 0 )*Q = ( x x )
- *> ( A2 A3 ) ( 0 x )
- *> and
- *> V**H *B*Q = V**H *( B1 0 )*Q = ( x x )
- *> ( B2 B3 ) ( 0 x )
- *> where
- *>
- *> U = ( CSU SNU ), V = ( CSV SNV ),
- *> ( -SNU**H CSU ) ( -SNV**H CSV )
- *>
- *> Q = ( CSQ SNQ )
- *> ( -SNQ**H CSQ )
- *>
- *> The rows of the transformed A and B are parallel. Moreover, if the
- *> input 2-by-2 matrix A is not zero, then the transformed (1,1) entry
- *> of A is not zero. If the input matrices A and B are both not zero,
- *> then the transformed (2,2) element of B is not zero, except when the
- *> first rows of input A and B are parallel and the second rows are
- *> zero.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPPER
- *> \verbatim
- *> UPPER is LOGICAL
- *> = .TRUE.: the input matrices A and B are upper triangular.
- *> = .FALSE.: the input matrices A and B are lower triangular.
- *> \endverbatim
- *>
- *> \param[in] A1
- *> \verbatim
- *> A1 is DOUBLE PRECISION
- *> \endverbatim
- *>
- *> \param[in] A2
- *> \verbatim
- *> A2 is COMPLEX*16
- *> \endverbatim
- *>
- *> \param[in] A3
- *> \verbatim
- *> A3 is DOUBLE PRECISION
- *> On entry, A1, A2 and A3 are elements of the input 2-by-2
- *> upper (lower) triangular matrix A.
- *> \endverbatim
- *>
- *> \param[in] B1
- *> \verbatim
- *> B1 is DOUBLE PRECISION
- *> \endverbatim
- *>
- *> \param[in] B2
- *> \verbatim
- *> B2 is COMPLEX*16
- *> \endverbatim
- *>
- *> \param[in] B3
- *> \verbatim
- *> B3 is DOUBLE PRECISION
- *> On entry, B1, B2 and B3 are elements of the input 2-by-2
- *> upper (lower) triangular matrix B.
- *> \endverbatim
- *>
- *> \param[out] CSU
- *> \verbatim
- *> CSU is DOUBLE PRECISION
- *> \endverbatim
- *>
- *> \param[out] SNU
- *> \verbatim
- *> SNU is COMPLEX*16
- *> The desired unitary matrix U.
- *> \endverbatim
- *>
- *> \param[out] CSV
- *> \verbatim
- *> CSV is DOUBLE PRECISION
- *> \endverbatim
- *>
- *> \param[out] SNV
- *> \verbatim
- *> SNV is COMPLEX*16
- *> The desired unitary matrix V.
- *> \endverbatim
- *>
- *> \param[out] CSQ
- *> \verbatim
- *> CSQ is DOUBLE PRECISION
- *> \endverbatim
- *>
- *> \param[out] SNQ
- *> \verbatim
- *> SNQ is COMPLEX*16
- *> The desired unitary matrix Q.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16OTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE ZLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV,
- $ SNV, CSQ, SNQ )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- LOGICAL UPPER
- DOUBLE PRECISION A1, A3, B1, B3, CSQ, CSU, CSV
- COMPLEX*16 A2, B2, SNQ, SNU, SNV
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- DOUBLE PRECISION A, AUA11, AUA12, AUA21, AUA22, AVB12, AVB11,
- $ AVB21, AVB22, CSL, CSR, D, FB, FC, S1, S2,
- $ SNL, SNR, UA11R, UA22R, VB11R, VB22R
- COMPLEX*16 B, C, D1, R, T, UA11, UA12, UA21, UA22, VB11,
- $ VB12, VB21, VB22
- * ..
- * .. External Subroutines ..
- EXTERNAL DLASV2, ZLARTG
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG
- * ..
- * .. Statement Functions ..
- DOUBLE PRECISION ABS1
- * ..
- * .. Statement Function definitions ..
- ABS1( T ) = ABS( DBLE( T ) ) + ABS( DIMAG( T ) )
- * ..
- * .. Executable Statements ..
- *
- IF( UPPER ) THEN
- *
- * Input matrices A and B are upper triangular matrices
- *
- * Form matrix C = A*adj(B) = ( a b )
- * ( 0 d )
- *
- A = A1*B3
- D = A3*B1
- B = A2*B1 - A1*B2
- FB = ABS( B )
- *
- * Transform complex 2-by-2 matrix C to real matrix by unitary
- * diagonal matrix diag(1,D1).
- *
- D1 = ONE
- IF( FB.NE.ZERO )
- $ D1 = B / FB
- *
- * The SVD of real 2 by 2 triangular C
- *
- * ( CSL -SNL )*( A B )*( CSR SNR ) = ( R 0 )
- * ( SNL CSL ) ( 0 D ) ( -SNR CSR ) ( 0 T )
- *
- CALL DLASV2( A, FB, D, S1, S2, SNR, CSR, SNL, CSL )
- *
- IF( ABS( CSL ).GE.ABS( SNL ) .OR. ABS( CSR ).GE.ABS( SNR ) )
- $ THEN
- *
- * Compute the (1,1) and (1,2) elements of U**H *A and V**H *B,
- * and (1,2) element of |U|**H *|A| and |V|**H *|B|.
- *
- UA11R = CSL*A1
- UA12 = CSL*A2 + D1*SNL*A3
- *
- VB11R = CSR*B1
- VB12 = CSR*B2 + D1*SNR*B3
- *
- AUA12 = ABS( CSL )*ABS1( A2 ) + ABS( SNL )*ABS( A3 )
- AVB12 = ABS( CSR )*ABS1( B2 ) + ABS( SNR )*ABS( B3 )
- *
- * zero (1,2) elements of U**H *A and V**H *B
- *
- IF( ( ABS( UA11R )+ABS1( UA12 ) ).EQ.ZERO ) THEN
- CALL ZLARTG( -DCMPLX( VB11R ), DCONJG( VB12 ), CSQ, SNQ,
- $ R )
- ELSE IF( ( ABS( VB11R )+ABS1( VB12 ) ).EQ.ZERO ) THEN
- CALL ZLARTG( -DCMPLX( UA11R ), DCONJG( UA12 ), CSQ, SNQ,
- $ R )
- ELSE IF( AUA12 / ( ABS( UA11R )+ABS1( UA12 ) ).LE.AVB12 /
- $ ( ABS( VB11R )+ABS1( VB12 ) ) ) THEN
- CALL ZLARTG( -DCMPLX( UA11R ), DCONJG( UA12 ), CSQ, SNQ,
- $ R )
- ELSE
- CALL ZLARTG( -DCMPLX( VB11R ), DCONJG( VB12 ), CSQ, SNQ,
- $ R )
- END IF
- *
- CSU = CSL
- SNU = -D1*SNL
- CSV = CSR
- SNV = -D1*SNR
- *
- ELSE
- *
- * Compute the (2,1) and (2,2) elements of U**H *A and V**H *B,
- * and (2,2) element of |U|**H *|A| and |V|**H *|B|.
- *
- UA21 = -DCONJG( D1 )*SNL*A1
- UA22 = -DCONJG( D1 )*SNL*A2 + CSL*A3
- *
- VB21 = -DCONJG( D1 )*SNR*B1
- VB22 = -DCONJG( D1 )*SNR*B2 + CSR*B3
- *
- AUA22 = ABS( SNL )*ABS1( A2 ) + ABS( CSL )*ABS( A3 )
- AVB22 = ABS( SNR )*ABS1( B2 ) + ABS( CSR )*ABS( B3 )
- *
- * zero (2,2) elements of U**H *A and V**H *B, and then swap.
- *
- IF( ( ABS1( UA21 )+ABS1( UA22 ) ).EQ.ZERO ) THEN
- CALL ZLARTG( -DCONJG( VB21 ), DCONJG( VB22 ), CSQ, SNQ,
- $ R )
- ELSE IF( ( ABS1( VB21 )+ABS( VB22 ) ).EQ.ZERO ) THEN
- CALL ZLARTG( -DCONJG( UA21 ), DCONJG( UA22 ), CSQ, SNQ,
- $ R )
- ELSE IF( AUA22 / ( ABS1( UA21 )+ABS1( UA22 ) ).LE.AVB22 /
- $ ( ABS1( VB21 )+ABS1( VB22 ) ) ) THEN
- CALL ZLARTG( -DCONJG( UA21 ), DCONJG( UA22 ), CSQ, SNQ,
- $ R )
- ELSE
- CALL ZLARTG( -DCONJG( VB21 ), DCONJG( VB22 ), CSQ, SNQ,
- $ R )
- END IF
- *
- CSU = SNL
- SNU = D1*CSL
- CSV = SNR
- SNV = D1*CSR
- *
- END IF
- *
- ELSE
- *
- * Input matrices A and B are lower triangular matrices
- *
- * Form matrix C = A*adj(B) = ( a 0 )
- * ( c d )
- *
- A = A1*B3
- D = A3*B1
- C = A2*B3 - A3*B2
- FC = ABS( C )
- *
- * Transform complex 2-by-2 matrix C to real matrix by unitary
- * diagonal matrix diag(d1,1).
- *
- D1 = ONE
- IF( FC.NE.ZERO )
- $ D1 = C / FC
- *
- * The SVD of real 2 by 2 triangular C
- *
- * ( CSL -SNL )*( A 0 )*( CSR SNR ) = ( R 0 )
- * ( SNL CSL ) ( C D ) ( -SNR CSR ) ( 0 T )
- *
- CALL DLASV2( A, FC, D, S1, S2, SNR, CSR, SNL, CSL )
- *
- IF( ABS( CSR ).GE.ABS( SNR ) .OR. ABS( CSL ).GE.ABS( SNL ) )
- $ THEN
- *
- * Compute the (2,1) and (2,2) elements of U**H *A and V**H *B,
- * and (2,1) element of |U|**H *|A| and |V|**H *|B|.
- *
- UA21 = -D1*SNR*A1 + CSR*A2
- UA22R = CSR*A3
- *
- VB21 = -D1*SNL*B1 + CSL*B2
- VB22R = CSL*B3
- *
- AUA21 = ABS( SNR )*ABS( A1 ) + ABS( CSR )*ABS1( A2 )
- AVB21 = ABS( SNL )*ABS( B1 ) + ABS( CSL )*ABS1( B2 )
- *
- * zero (2,1) elements of U**H *A and V**H *B.
- *
- IF( ( ABS1( UA21 )+ABS( UA22R ) ).EQ.ZERO ) THEN
- CALL ZLARTG( DCMPLX( VB22R ), VB21, CSQ, SNQ, R )
- ELSE IF( ( ABS1( VB21 )+ABS( VB22R ) ).EQ.ZERO ) THEN
- CALL ZLARTG( DCMPLX( UA22R ), UA21, CSQ, SNQ, R )
- ELSE IF( AUA21 / ( ABS1( UA21 )+ABS( UA22R ) ).LE.AVB21 /
- $ ( ABS1( VB21 )+ABS( VB22R ) ) ) THEN
- CALL ZLARTG( DCMPLX( UA22R ), UA21, CSQ, SNQ, R )
- ELSE
- CALL ZLARTG( DCMPLX( VB22R ), VB21, CSQ, SNQ, R )
- END IF
- *
- CSU = CSR
- SNU = -DCONJG( D1 )*SNR
- CSV = CSL
- SNV = -DCONJG( D1 )*SNL
- *
- ELSE
- *
- * Compute the (1,1) and (1,2) elements of U**H *A and V**H *B,
- * and (1,1) element of |U|**H *|A| and |V|**H *|B|.
- *
- UA11 = CSR*A1 + DCONJG( D1 )*SNR*A2
- UA12 = DCONJG( D1 )*SNR*A3
- *
- VB11 = CSL*B1 + DCONJG( D1 )*SNL*B2
- VB12 = DCONJG( D1 )*SNL*B3
- *
- AUA11 = ABS( CSR )*ABS( A1 ) + ABS( SNR )*ABS1( A2 )
- AVB11 = ABS( CSL )*ABS( B1 ) + ABS( SNL )*ABS1( B2 )
- *
- * zero (1,1) elements of U**H *A and V**H *B, and then swap.
- *
- IF( ( ABS1( UA11 )+ABS1( UA12 ) ).EQ.ZERO ) THEN
- CALL ZLARTG( VB12, VB11, CSQ, SNQ, R )
- ELSE IF( ( ABS1( VB11 )+ABS1( VB12 ) ).EQ.ZERO ) THEN
- CALL ZLARTG( UA12, UA11, CSQ, SNQ, R )
- ELSE IF( AUA11 / ( ABS1( UA11 )+ABS1( UA12 ) ).LE.AVB11 /
- $ ( ABS1( VB11 )+ABS1( VB12 ) ) ) THEN
- CALL ZLARTG( UA12, UA11, CSQ, SNQ, R )
- ELSE
- CALL ZLARTG( VB12, VB11, CSQ, SNQ, R )
- END IF
- *
- CSU = SNR
- SNU = DCONJG( D1 )*CSR
- CSV = SNL
- SNV = DCONJG( D1 )*CSL
- *
- END IF
- *
- END IF
- *
- RETURN
- *
- * End of ZLAGS2
- *
- END
|