|
- *> \brief \b ZHPTRF
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZHPTRF + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhptrf.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhptrf.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhptrf.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZHPTRF( UPLO, N, AP, IPIV, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, N
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX*16 AP( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZHPTRF computes the factorization of a complex Hermitian packed
- *> matrix A using the Bunch-Kaufman diagonal pivoting method:
- *>
- *> A = U*D*U**H or A = L*D*L**H
- *>
- *> where U (or L) is a product of permutation and unit upper (lower)
- *> triangular matrices, and D is Hermitian and block diagonal with
- *> 1-by-1 and 2-by-2 diagonal blocks.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AP
- *> \verbatim
- *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
- *> On entry, the upper or lower triangle of the Hermitian matrix
- *> A, packed columnwise in a linear array. The j-th column of A
- *> is stored in the array AP as follows:
- *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
- *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
- *>
- *> On exit, the block diagonal matrix D and the multipliers used
- *> to obtain the factor U or L, stored as a packed triangular
- *> matrix overwriting A (see below for further details).
- *> \endverbatim
- *>
- *> \param[out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges and the block structure of D.
- *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
- *> interchanged and D(k,k) is a 1-by-1 diagonal block.
- *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
- *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
- *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
- *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
- *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
- *> has been completed, but the block diagonal matrix D is
- *> exactly singular, and division by zero will occur if it
- *> is used to solve a system of equations.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16OTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> If UPLO = 'U', then A = U*D*U**H, where
- *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
- *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
- *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
- *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
- *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
- *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
- *>
- *> ( I v 0 ) k-s
- *> U(k) = ( 0 I 0 ) s
- *> ( 0 0 I ) n-k
- *> k-s s n-k
- *>
- *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
- *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
- *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
- *>
- *> If UPLO = 'L', then A = L*D*L**H, where
- *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
- *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
- *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
- *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
- *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
- *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
- *>
- *> ( I 0 0 ) k-1
- *> L(k) = ( 0 I 0 ) s
- *> ( 0 v I ) n-k-s+1
- *> k-1 s n-k-s+1
- *>
- *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
- *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
- *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
- *> \endverbatim
- *
- *> \par Contributors:
- * ==================
- *>
- *> J. Lewis, Boeing Computer Services Company
- *
- * =====================================================================
- SUBROUTINE ZHPTRF( UPLO, N, AP, IPIV, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX*16 AP( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- DOUBLE PRECISION EIGHT, SEVTEN
- PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
- $ KSTEP, KX, NPP
- DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, ROWMAX,
- $ TT
- COMPLEX*16 D12, D21, T, WK, WKM1, WKP1, ZDUM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER IZAMAX
- DOUBLE PRECISION DLAPY2
- EXTERNAL LSAME, IZAMAX, DLAPY2
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZDSCAL, ZHPR, ZSWAP
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
- * ..
- * .. Statement Functions ..
- DOUBLE PRECISION CABS1
- * ..
- * .. Statement Function definitions ..
- CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZHPTRF', -INFO )
- RETURN
- END IF
- *
- * Initialize ALPHA for use in choosing pivot block size.
- *
- ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
- *
- IF( UPPER ) THEN
- *
- * Factorize A as U*D*U**H using the upper triangle of A
- *
- * K is the main loop index, decreasing from N to 1 in steps of
- * 1 or 2
- *
- K = N
- KC = ( N-1 )*N / 2 + 1
- 10 CONTINUE
- KNC = KC
- *
- * If K < 1, exit from loop
- *
- IF( K.LT.1 )
- $ GO TO 110
- KSTEP = 1
- *
- * Determine rows and columns to be interchanged and whether
- * a 1-by-1 or 2-by-2 pivot block will be used
- *
- ABSAKK = ABS( DBLE( AP( KC+K-1 ) ) )
- *
- * IMAX is the row-index of the largest off-diagonal element in
- * column K, and COLMAX is its absolute value
- *
- IF( K.GT.1 ) THEN
- IMAX = IZAMAX( K-1, AP( KC ), 1 )
- COLMAX = CABS1( AP( KC+IMAX-1 ) )
- ELSE
- COLMAX = ZERO
- END IF
- *
- IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
- *
- * Column K is zero: set INFO and continue
- *
- IF( INFO.EQ.0 )
- $ INFO = K
- KP = K
- AP( KC+K-1 ) = DBLE( AP( KC+K-1 ) )
- ELSE
- IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
- *
- * no interchange, use 1-by-1 pivot block
- *
- KP = K
- ELSE
- *
- * JMAX is the column-index of the largest off-diagonal
- * element in row IMAX, and ROWMAX is its absolute value
- *
- ROWMAX = ZERO
- JMAX = IMAX
- KX = IMAX*( IMAX+1 ) / 2 + IMAX
- DO 20 J = IMAX + 1, K
- IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
- ROWMAX = CABS1( AP( KX ) )
- JMAX = J
- END IF
- KX = KX + J
- 20 CONTINUE
- KPC = ( IMAX-1 )*IMAX / 2 + 1
- IF( IMAX.GT.1 ) THEN
- JMAX = IZAMAX( IMAX-1, AP( KPC ), 1 )
- ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-1 ) ) )
- END IF
- *
- IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
- *
- * no interchange, use 1-by-1 pivot block
- *
- KP = K
- ELSE IF( ABS( DBLE( AP( KPC+IMAX-1 ) ) ).GE.ALPHA*
- $ ROWMAX ) THEN
- *
- * interchange rows and columns K and IMAX, use 1-by-1
- * pivot block
- *
- KP = IMAX
- ELSE
- *
- * interchange rows and columns K-1 and IMAX, use 2-by-2
- * pivot block
- *
- KP = IMAX
- KSTEP = 2
- END IF
- END IF
- *
- KK = K - KSTEP + 1
- IF( KSTEP.EQ.2 )
- $ KNC = KNC - K + 1
- IF( KP.NE.KK ) THEN
- *
- * Interchange rows and columns KK and KP in the leading
- * submatrix A(1:k,1:k)
- *
- CALL ZSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
- KX = KPC + KP - 1
- DO 30 J = KP + 1, KK - 1
- KX = KX + J - 1
- T = DCONJG( AP( KNC+J-1 ) )
- AP( KNC+J-1 ) = DCONJG( AP( KX ) )
- AP( KX ) = T
- 30 CONTINUE
- AP( KX+KK-1 ) = DCONJG( AP( KX+KK-1 ) )
- R1 = DBLE( AP( KNC+KK-1 ) )
- AP( KNC+KK-1 ) = DBLE( AP( KPC+KP-1 ) )
- AP( KPC+KP-1 ) = R1
- IF( KSTEP.EQ.2 ) THEN
- AP( KC+K-1 ) = DBLE( AP( KC+K-1 ) )
- T = AP( KC+K-2 )
- AP( KC+K-2 ) = AP( KC+KP-1 )
- AP( KC+KP-1 ) = T
- END IF
- ELSE
- AP( KC+K-1 ) = DBLE( AP( KC+K-1 ) )
- IF( KSTEP.EQ.2 )
- $ AP( KC-1 ) = DBLE( AP( KC-1 ) )
- END IF
- *
- * Update the leading submatrix
- *
- IF( KSTEP.EQ.1 ) THEN
- *
- * 1-by-1 pivot block D(k): column k now holds
- *
- * W(k) = U(k)*D(k)
- *
- * where U(k) is the k-th column of U
- *
- * Perform a rank-1 update of A(1:k-1,1:k-1) as
- *
- * A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H
- *
- R1 = ONE / DBLE( AP( KC+K-1 ) )
- CALL ZHPR( UPLO, K-1, -R1, AP( KC ), 1, AP )
- *
- * Store U(k) in column k
- *
- CALL ZDSCAL( K-1, R1, AP( KC ), 1 )
- ELSE
- *
- * 2-by-2 pivot block D(k): columns k and k-1 now hold
- *
- * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
- *
- * where U(k) and U(k-1) are the k-th and (k-1)-th columns
- * of U
- *
- * Perform a rank-2 update of A(1:k-2,1:k-2) as
- *
- * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H
- * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H
- *
- IF( K.GT.2 ) THEN
- *
- D = DLAPY2( DBLE( AP( K-1+( K-1 )*K / 2 ) ),
- $ DIMAG( AP( K-1+( K-1 )*K / 2 ) ) )
- D22 = DBLE( AP( K-1+( K-2 )*( K-1 ) / 2 ) ) / D
- D11 = DBLE( AP( K+( K-1 )*K / 2 ) ) / D
- TT = ONE / ( D11*D22-ONE )
- D12 = AP( K-1+( K-1 )*K / 2 ) / D
- D = TT / D
- *
- DO 50 J = K - 2, 1, -1
- WKM1 = D*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
- $ DCONJG( D12 )*AP( J+( K-1 )*K / 2 ) )
- WK = D*( D22*AP( J+( K-1 )*K / 2 )-D12*
- $ AP( J+( K-2 )*( K-1 ) / 2 ) )
- DO 40 I = J, 1, -1
- AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) -
- $ AP( I+( K-1 )*K / 2 )*DCONJG( WK ) -
- $ AP( I+( K-2 )*( K-1 ) / 2 )*DCONJG( WKM1 )
- 40 CONTINUE
- AP( J+( K-1 )*K / 2 ) = WK
- AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
- AP( J+( J-1 )*J / 2 ) = DCMPLX( DBLE( AP( J+( J-
- $ 1 )*J / 2 ) ), 0.0D+0 )
- 50 CONTINUE
- *
- END IF
- *
- END IF
- END IF
- *
- * Store details of the interchanges in IPIV
- *
- IF( KSTEP.EQ.1 ) THEN
- IPIV( K ) = KP
- ELSE
- IPIV( K ) = -KP
- IPIV( K-1 ) = -KP
- END IF
- *
- * Decrease K and return to the start of the main loop
- *
- K = K - KSTEP
- KC = KNC - K
- GO TO 10
- *
- ELSE
- *
- * Factorize A as L*D*L**H using the lower triangle of A
- *
- * K is the main loop index, increasing from 1 to N in steps of
- * 1 or 2
- *
- K = 1
- KC = 1
- NPP = N*( N+1 ) / 2
- 60 CONTINUE
- KNC = KC
- *
- * If K > N, exit from loop
- *
- IF( K.GT.N )
- $ GO TO 110
- KSTEP = 1
- *
- * Determine rows and columns to be interchanged and whether
- * a 1-by-1 or 2-by-2 pivot block will be used
- *
- ABSAKK = ABS( DBLE( AP( KC ) ) )
- *
- * IMAX is the row-index of the largest off-diagonal element in
- * column K, and COLMAX is its absolute value
- *
- IF( K.LT.N ) THEN
- IMAX = K + IZAMAX( N-K, AP( KC+1 ), 1 )
- COLMAX = CABS1( AP( KC+IMAX-K ) )
- ELSE
- COLMAX = ZERO
- END IF
- *
- IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
- *
- * Column K is zero: set INFO and continue
- *
- IF( INFO.EQ.0 )
- $ INFO = K
- KP = K
- AP( KC ) = DBLE( AP( KC ) )
- ELSE
- IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
- *
- * no interchange, use 1-by-1 pivot block
- *
- KP = K
- ELSE
- *
- * JMAX is the column-index of the largest off-diagonal
- * element in row IMAX, and ROWMAX is its absolute value
- *
- ROWMAX = ZERO
- KX = KC + IMAX - K
- DO 70 J = K, IMAX - 1
- IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
- ROWMAX = CABS1( AP( KX ) )
- JMAX = J
- END IF
- KX = KX + N - J
- 70 CONTINUE
- KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
- IF( IMAX.LT.N ) THEN
- JMAX = IMAX + IZAMAX( N-IMAX, AP( KPC+1 ), 1 )
- ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-IMAX ) ) )
- END IF
- *
- IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
- *
- * no interchange, use 1-by-1 pivot block
- *
- KP = K
- ELSE IF( ABS( DBLE( AP( KPC ) ) ).GE.ALPHA*ROWMAX ) THEN
- *
- * interchange rows and columns K and IMAX, use 1-by-1
- * pivot block
- *
- KP = IMAX
- ELSE
- *
- * interchange rows and columns K+1 and IMAX, use 2-by-2
- * pivot block
- *
- KP = IMAX
- KSTEP = 2
- END IF
- END IF
- *
- KK = K + KSTEP - 1
- IF( KSTEP.EQ.2 )
- $ KNC = KNC + N - K + 1
- IF( KP.NE.KK ) THEN
- *
- * Interchange rows and columns KK and KP in the trailing
- * submatrix A(k:n,k:n)
- *
- IF( KP.LT.N )
- $ CALL ZSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
- $ 1 )
- KX = KNC + KP - KK
- DO 80 J = KK + 1, KP - 1
- KX = KX + N - J + 1
- T = DCONJG( AP( KNC+J-KK ) )
- AP( KNC+J-KK ) = DCONJG( AP( KX ) )
- AP( KX ) = T
- 80 CONTINUE
- AP( KNC+KP-KK ) = DCONJG( AP( KNC+KP-KK ) )
- R1 = DBLE( AP( KNC ) )
- AP( KNC ) = DBLE( AP( KPC ) )
- AP( KPC ) = R1
- IF( KSTEP.EQ.2 ) THEN
- AP( KC ) = DBLE( AP( KC ) )
- T = AP( KC+1 )
- AP( KC+1 ) = AP( KC+KP-K )
- AP( KC+KP-K ) = T
- END IF
- ELSE
- AP( KC ) = DBLE( AP( KC ) )
- IF( KSTEP.EQ.2 )
- $ AP( KNC ) = DBLE( AP( KNC ) )
- END IF
- *
- * Update the trailing submatrix
- *
- IF( KSTEP.EQ.1 ) THEN
- *
- * 1-by-1 pivot block D(k): column k now holds
- *
- * W(k) = L(k)*D(k)
- *
- * where L(k) is the k-th column of L
- *
- IF( K.LT.N ) THEN
- *
- * Perform a rank-1 update of A(k+1:n,k+1:n) as
- *
- * A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H
- *
- R1 = ONE / DBLE( AP( KC ) )
- CALL ZHPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
- $ AP( KC+N-K+1 ) )
- *
- * Store L(k) in column K
- *
- CALL ZDSCAL( N-K, R1, AP( KC+1 ), 1 )
- END IF
- ELSE
- *
- * 2-by-2 pivot block D(k): columns K and K+1 now hold
- *
- * ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
- *
- * where L(k) and L(k+1) are the k-th and (k+1)-th columns
- * of L
- *
- IF( K.LT.N-1 ) THEN
- *
- * Perform a rank-2 update of A(k+2:n,k+2:n) as
- *
- * A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H
- * = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H
- *
- * where L(k) and L(k+1) are the k-th and (k+1)-th
- * columns of L
- *
- D = DLAPY2( DBLE( AP( K+1+( K-1 )*( 2*N-K ) / 2 ) ),
- $ DIMAG( AP( K+1+( K-1 )*( 2*N-K ) / 2 ) ) )
- D11 = DBLE( AP( K+1+K*( 2*N-K-1 ) / 2 ) ) / D
- D22 = DBLE( AP( K+( K-1 )*( 2*N-K ) / 2 ) ) / D
- TT = ONE / ( D11*D22-ONE )
- D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 ) / D
- D = TT / D
- *
- DO 100 J = K + 2, N
- WK = D*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )-D21*
- $ AP( J+K*( 2*N-K-1 ) / 2 ) )
- WKP1 = D*( D22*AP( J+K*( 2*N-K-1 ) / 2 )-
- $ DCONJG( D21 )*AP( J+( K-1 )*( 2*N-K ) /
- $ 2 ) )
- DO 90 I = J, N
- AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )*
- $ ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) /
- $ 2 )*DCONJG( WK ) - AP( I+K*( 2*N-K-1 ) / 2 )*
- $ DCONJG( WKP1 )
- 90 CONTINUE
- AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK
- AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1
- AP( J+( J-1 )*( 2*N-J ) / 2 )
- $ = DCMPLX( DBLE( AP( J+( J-1 )*( 2*N-J ) / 2 ) ),
- $ 0.0D+0 )
- 100 CONTINUE
- END IF
- END IF
- END IF
- *
- * Store details of the interchanges in IPIV
- *
- IF( KSTEP.EQ.1 ) THEN
- IPIV( K ) = KP
- ELSE
- IPIV( K ) = -KP
- IPIV( K+1 ) = -KP
- END IF
- *
- * Increase K and return to the start of the main loop
- *
- K = K + KSTEP
- KC = KNC + N - K + 2
- GO TO 60
- *
- END IF
- *
- 110 CONTINUE
- RETURN
- *
- * End of ZHPTRF
- *
- END
|