|
- *> \brief <b> ZHPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZHPEVD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpevd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpevd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpevd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
- * RWORK, LRWORK, IWORK, LIWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, UPLO
- * INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * DOUBLE PRECISION RWORK( * ), W( * )
- * COMPLEX*16 AP( * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZHPEVD computes all the eigenvalues and, optionally, eigenvectors of
- *> a complex Hermitian matrix A in packed storage. If eigenvectors are
- *> desired, it uses a divide and conquer algorithm.
- *>
- *> The divide and conquer algorithm makes very mild assumptions about
- *> floating point arithmetic. It will work on machines with a guard
- *> digit in add/subtract, or on those binary machines without guard
- *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
- *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
- *> without guard digits, but we know of none.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AP
- *> \verbatim
- *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
- *> On entry, the upper or lower triangle of the Hermitian matrix
- *> A, packed columnwise in a linear array. The j-th column of A
- *> is stored in the array AP as follows:
- *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
- *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
- *>
- *> On exit, AP is overwritten by values generated during the
- *> reduction to tridiagonal form. If UPLO = 'U', the diagonal
- *> and first superdiagonal of the tridiagonal matrix T overwrite
- *> the corresponding elements of A, and if UPLO = 'L', the
- *> diagonal and first subdiagonal of T overwrite the
- *> corresponding elements of A.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is DOUBLE PRECISION array, dimension (N)
- *> If INFO = 0, the eigenvalues in ascending order.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is COMPLEX*16 array, dimension (LDZ, N)
- *> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
- *> eigenvectors of the matrix A, with the i-th column of Z
- *> holding the eigenvector associated with W(i).
- *> If JOBZ = 'N', then Z is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1, and if
- *> JOBZ = 'V', LDZ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the required LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of array WORK.
- *> If N <= 1, LWORK must be at least 1.
- *> If JOBZ = 'N' and N > 1, LWORK must be at least N.
- *> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the required sizes of the WORK, RWORK and
- *> IWORK arrays, returns these values as the first entries of
- *> the WORK, RWORK and IWORK arrays, and no error message
- *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
- *> On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
- *> \endverbatim
- *>
- *> \param[in] LRWORK
- *> \verbatim
- *> LRWORK is INTEGER
- *> The dimension of array RWORK.
- *> If N <= 1, LRWORK must be at least 1.
- *> If JOBZ = 'N' and N > 1, LRWORK must be at least N.
- *> If JOBZ = 'V' and N > 1, LRWORK must be at least
- *> 1 + 5*N + 2*N**2.
- *>
- *> If LRWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the required sizes of the WORK, RWORK
- *> and IWORK arrays, returns these values as the first entries
- *> of the WORK, RWORK and IWORK arrays, and no error message
- *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
- *> On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
- *> \endverbatim
- *>
- *> \param[in] LIWORK
- *> \verbatim
- *> LIWORK is INTEGER
- *> The dimension of array IWORK.
- *> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
- *> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
- *>
- *> If LIWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the required sizes of the WORK, RWORK
- *> and IWORK arrays, returns these values as the first entries
- *> of the WORK, RWORK and IWORK arrays, and no error message
- *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: if INFO = i, the algorithm failed to converge; i
- *> off-diagonal elements of an intermediate tridiagonal
- *> form did not converge to zero.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date June 2017
- *
- *> \ingroup complex16OTHEReigen
- *
- * =====================================================================
- SUBROUTINE ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
- $ RWORK, LRWORK, IWORK, LIWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.7.1) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * June 2017
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, UPLO
- INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- DOUBLE PRECISION RWORK( * ), W( * )
- COMPLEX*16 AP( * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- COMPLEX*16 CONE
- PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, WANTZ
- INTEGER IINFO, IMAX, INDE, INDRWK, INDTAU, INDWRK,
- $ ISCALE, LIWMIN, LLRWK, LLWRK, LRWMIN, LWMIN
- DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
- $ SMLNUM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, ZLANHP
- EXTERNAL LSAME, DLAMCH, ZLANHP
- * ..
- * .. External Subroutines ..
- EXTERNAL DSCAL, DSTERF, XERBLA, ZDSCAL, ZHPTRD, ZSTEDC,
- $ ZUPMTR
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- WANTZ = LSAME( JOBZ, 'V' )
- LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
- *
- INFO = 0
- IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
- $ THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
- INFO = -7
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- IF( N.LE.1 ) THEN
- LWMIN = 1
- LIWMIN = 1
- LRWMIN = 1
- ELSE
- IF( WANTZ ) THEN
- LWMIN = 2*N
- LRWMIN = 1 + 5*N + 2*N**2
- LIWMIN = 3 + 5*N
- ELSE
- LWMIN = N
- LRWMIN = N
- LIWMIN = 1
- END IF
- END IF
- WORK( 1 ) = LWMIN
- RWORK( 1 ) = LRWMIN
- IWORK( 1 ) = LIWMIN
- *
- IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -9
- ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -11
- ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -13
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZHPEVD', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( N.EQ.1 ) THEN
- W( 1 ) = AP( 1 )
- IF( WANTZ )
- $ Z( 1, 1 ) = CONE
- RETURN
- END IF
- *
- * Get machine constants.
- *
- SAFMIN = DLAMCH( 'Safe minimum' )
- EPS = DLAMCH( 'Precision' )
- SMLNUM = SAFMIN / EPS
- BIGNUM = ONE / SMLNUM
- RMIN = SQRT( SMLNUM )
- RMAX = SQRT( BIGNUM )
- *
- * Scale matrix to allowable range, if necessary.
- *
- ANRM = ZLANHP( 'M', UPLO, N, AP, RWORK )
- ISCALE = 0
- IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
- ISCALE = 1
- SIGMA = RMIN / ANRM
- ELSE IF( ANRM.GT.RMAX ) THEN
- ISCALE = 1
- SIGMA = RMAX / ANRM
- END IF
- IF( ISCALE.EQ.1 ) THEN
- CALL ZDSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
- END IF
- *
- * Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
- *
- INDE = 1
- INDTAU = 1
- INDRWK = INDE + N
- INDWRK = INDTAU + N
- LLWRK = LWORK - INDWRK + 1
- LLRWK = LRWORK - INDRWK + 1
- CALL ZHPTRD( UPLO, N, AP, W, RWORK( INDE ), WORK( INDTAU ),
- $ IINFO )
- *
- * For eigenvalues only, call DSTERF. For eigenvectors, first call
- * ZUPGTR to generate the orthogonal matrix, then call ZSTEDC.
- *
- IF( .NOT.WANTZ ) THEN
- CALL DSTERF( N, W, RWORK( INDE ), INFO )
- ELSE
- CALL ZSTEDC( 'I', N, W, RWORK( INDE ), Z, LDZ, WORK( INDWRK ),
- $ LLWRK, RWORK( INDRWK ), LLRWK, IWORK, LIWORK,
- $ INFO )
- CALL ZUPMTR( 'L', UPLO, 'N', N, N, AP, WORK( INDTAU ), Z, LDZ,
- $ WORK( INDWRK ), IINFO )
- END IF
- *
- * If matrix was scaled, then rescale eigenvalues appropriately.
- *
- IF( ISCALE.EQ.1 ) THEN
- IF( INFO.EQ.0 ) THEN
- IMAX = N
- ELSE
- IMAX = INFO - 1
- END IF
- CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
- END IF
- *
- WORK( 1 ) = LWMIN
- RWORK( 1 ) = LRWMIN
- IWORK( 1 ) = LIWMIN
- RETURN
- *
- * End of ZHPEVD
- *
- END
|