|
- *> \brief \b ZHETD2 reduces a Hermitian matrix to real symmetric tridiagonal form by an unitary similarity transformation (unblocked algorithm).
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZHETD2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetd2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetd2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetd2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION D( * ), E( * )
- * COMPLEX*16 A( LDA, * ), TAU( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZHETD2 reduces a complex Hermitian matrix A to real symmetric
- *> tridiagonal form T by a unitary similarity transformation:
- *> Q**H * A * Q = T.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> Hermitian matrix A is stored:
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
- *> n-by-n upper triangular part of A contains the upper
- *> triangular part of the matrix A, and the strictly lower
- *> triangular part of A is not referenced. If UPLO = 'L', the
- *> leading n-by-n lower triangular part of A contains the lower
- *> triangular part of the matrix A, and the strictly upper
- *> triangular part of A is not referenced.
- *> On exit, if UPLO = 'U', the diagonal and first superdiagonal
- *> of A are overwritten by the corresponding elements of the
- *> tridiagonal matrix T, and the elements above the first
- *> superdiagonal, with the array TAU, represent the unitary
- *> matrix Q as a product of elementary reflectors; if UPLO
- *> = 'L', the diagonal and first subdiagonal of A are over-
- *> written by the corresponding elements of the tridiagonal
- *> matrix T, and the elements below the first subdiagonal, with
- *> the array TAU, represent the unitary matrix Q as a product
- *> of elementary reflectors. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (N)
- *> The diagonal elements of the tridiagonal matrix T:
- *> D(i) = A(i,i).
- *> \endverbatim
- *>
- *> \param[out] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (N-1)
- *> The off-diagonal elements of the tridiagonal matrix T:
- *> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is COMPLEX*16 array, dimension (N-1)
- *> The scalar factors of the elementary reflectors (see Further
- *> Details).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16HEcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> If UPLO = 'U', the matrix Q is represented as a product of elementary
- *> reflectors
- *>
- *> Q = H(n-1) . . . H(2) H(1).
- *>
- *> Each H(i) has the form
- *>
- *> H(i) = I - tau * v * v**H
- *>
- *> where tau is a complex scalar, and v is a complex vector with
- *> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
- *> A(1:i-1,i+1), and tau in TAU(i).
- *>
- *> If UPLO = 'L', the matrix Q is represented as a product of elementary
- *> reflectors
- *>
- *> Q = H(1) H(2) . . . H(n-1).
- *>
- *> Each H(i) has the form
- *>
- *> H(i) = I - tau * v * v**H
- *>
- *> where tau is a complex scalar, and v is a complex vector with
- *> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
- *> and tau in TAU(i).
- *>
- *> The contents of A on exit are illustrated by the following examples
- *> with n = 5:
- *>
- *> if UPLO = 'U': if UPLO = 'L':
- *>
- *> ( d e v2 v3 v4 ) ( d )
- *> ( d e v3 v4 ) ( e d )
- *> ( d e v4 ) ( v1 e d )
- *> ( d e ) ( v1 v2 e d )
- *> ( d ) ( v1 v2 v3 e d )
- *>
- *> where d and e denote diagonal and off-diagonal elements of T, and vi
- *> denotes an element of the vector defining H(i).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION D( * ), E( * )
- COMPLEX*16 A( LDA, * ), TAU( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ONE, ZERO, HALF
- PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
- $ ZERO = ( 0.0D+0, 0.0D+0 ),
- $ HALF = ( 0.5D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER I
- COMPLEX*16 ALPHA, TAUI
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZAXPY, ZHEMV, ZHER2, ZLARFG
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- COMPLEX*16 ZDOTC
- EXTERNAL LSAME, ZDOTC
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U')
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZHETD2', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.LE.0 )
- $ RETURN
- *
- IF( UPPER ) THEN
- *
- * Reduce the upper triangle of A
- *
- A( N, N ) = DBLE( A( N, N ) )
- DO 10 I = N - 1, 1, -1
- *
- * Generate elementary reflector H(i) = I - tau * v * v**H
- * to annihilate A(1:i-1,i+1)
- *
- ALPHA = A( I, I+1 )
- CALL ZLARFG( I, ALPHA, A( 1, I+1 ), 1, TAUI )
- E( I ) = ALPHA
- *
- IF( TAUI.NE.ZERO ) THEN
- *
- * Apply H(i) from both sides to A(1:i,1:i)
- *
- A( I, I+1 ) = ONE
- *
- * Compute x := tau * A * v storing x in TAU(1:i)
- *
- CALL ZHEMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
- $ TAU, 1 )
- *
- * Compute w := x - 1/2 * tau * (x**H * v) * v
- *
- ALPHA = -HALF*TAUI*ZDOTC( I, TAU, 1, A( 1, I+1 ), 1 )
- CALL ZAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
- *
- * Apply the transformation as a rank-2 update:
- * A := A - v * w**H - w * v**H
- *
- CALL ZHER2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
- $ LDA )
- *
- ELSE
- A( I, I ) = DBLE( A( I, I ) )
- END IF
- A( I, I+1 ) = E( I )
- D( I+1 ) = A( I+1, I+1 )
- TAU( I ) = TAUI
- 10 CONTINUE
- D( 1 ) = A( 1, 1 )
- ELSE
- *
- * Reduce the lower triangle of A
- *
- A( 1, 1 ) = DBLE( A( 1, 1 ) )
- DO 20 I = 1, N - 1
- *
- * Generate elementary reflector H(i) = I - tau * v * v**H
- * to annihilate A(i+2:n,i)
- *
- ALPHA = A( I+1, I )
- CALL ZLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAUI )
- E( I ) = ALPHA
- *
- IF( TAUI.NE.ZERO ) THEN
- *
- * Apply H(i) from both sides to A(i+1:n,i+1:n)
- *
- A( I+1, I ) = ONE
- *
- * Compute x := tau * A * v storing y in TAU(i:n-1)
- *
- CALL ZHEMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
- $ A( I+1, I ), 1, ZERO, TAU( I ), 1 )
- *
- * Compute w := x - 1/2 * tau * (x**H * v) * v
- *
- ALPHA = -HALF*TAUI*ZDOTC( N-I, TAU( I ), 1, A( I+1, I ),
- $ 1 )
- CALL ZAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
- *
- * Apply the transformation as a rank-2 update:
- * A := A - v * w**H - w * v**H
- *
- CALL ZHER2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
- $ A( I+1, I+1 ), LDA )
- *
- ELSE
- A( I+1, I+1 ) = DBLE( A( I+1, I+1 ) )
- END IF
- A( I+1, I ) = E( I )
- D( I ) = A( I, I )
- TAU( I ) = TAUI
- 20 CONTINUE
- D( N ) = A( N, N )
- END IF
- *
- RETURN
- *
- * End of ZHETD2
- *
- END
|