|
- *> \brief \b ZGESDD
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZGESDD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgesdd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgesdd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgesdd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT,
- * WORK, LWORK, RWORK, IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ
- * INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * DOUBLE PRECISION RWORK( * ), S( * )
- * COMPLEX*16 A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
- * $ WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZGESDD computes the singular value decomposition (SVD) of a complex
- *> M-by-N matrix A, optionally computing the left and/or right singular
- *> vectors, by using divide-and-conquer method. The SVD is written
- *>
- *> A = U * SIGMA * conjugate-transpose(V)
- *>
- *> where SIGMA is an M-by-N matrix which is zero except for its
- *> min(m,n) diagonal elements, U is an M-by-M unitary matrix, and
- *> V is an N-by-N unitary matrix. The diagonal elements of SIGMA
- *> are the singular values of A; they are real and non-negative, and
- *> are returned in descending order. The first min(m,n) columns of
- *> U and V are the left and right singular vectors of A.
- *>
- *> Note that the routine returns VT = V**H, not V.
- *>
- *> The divide and conquer algorithm makes very mild assumptions about
- *> floating point arithmetic. It will work on machines with a guard
- *> digit in add/subtract, or on those binary machines without guard
- *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
- *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
- *> without guard digits, but we know of none.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> Specifies options for computing all or part of the matrix U:
- *> = 'A': all M columns of U and all N rows of V**H are
- *> returned in the arrays U and VT;
- *> = 'S': the first min(M,N) columns of U and the first
- *> min(M,N) rows of V**H are returned in the arrays U
- *> and VT;
- *> = 'O': If M >= N, the first N columns of U are overwritten
- *> in the array A and all rows of V**H are returned in
- *> the array VT;
- *> otherwise, all columns of U are returned in the
- *> array U and the first M rows of V**H are overwritten
- *> in the array A;
- *> = 'N': no columns of U or rows of V**H are computed.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the input matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the input matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the M-by-N matrix A.
- *> On exit,
- *> if JOBZ = 'O', A is overwritten with the first N columns
- *> of U (the left singular vectors, stored
- *> columnwise) if M >= N;
- *> A is overwritten with the first M rows
- *> of V**H (the right singular vectors, stored
- *> rowwise) otherwise.
- *> if JOBZ .ne. 'O', the contents of A are destroyed.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is DOUBLE PRECISION array, dimension (min(M,N))
- *> The singular values of A, sorted so that S(i) >= S(i+1).
- *> \endverbatim
- *>
- *> \param[out] U
- *> \verbatim
- *> U is COMPLEX*16 array, dimension (LDU,UCOL)
- *> UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
- *> UCOL = min(M,N) if JOBZ = 'S'.
- *> If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
- *> unitary matrix U;
- *> if JOBZ = 'S', U contains the first min(M,N) columns of U
- *> (the left singular vectors, stored columnwise);
- *> if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of the array U. LDU >= 1;
- *> if JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.
- *> \endverbatim
- *>
- *> \param[out] VT
- *> \verbatim
- *> VT is COMPLEX*16 array, dimension (LDVT,N)
- *> If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the
- *> N-by-N unitary matrix V**H;
- *> if JOBZ = 'S', VT contains the first min(M,N) rows of
- *> V**H (the right singular vectors, stored rowwise);
- *> if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDVT
- *> \verbatim
- *> LDVT is INTEGER
- *> The leading dimension of the array VT. LDVT >= 1;
- *> if JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
- *> if JOBZ = 'S', LDVT >= min(M,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= 1.
- *> If LWORK = -1, a workspace query is assumed. The optimal
- *> size for the WORK array is calculated and stored in WORK(1),
- *> and no other work except argument checking is performed.
- *>
- *> Let mx = max(M,N) and mn = min(M,N).
- *> If JOBZ = 'N', LWORK >= 2*mn + mx.
- *> If JOBZ = 'O', LWORK >= 2*mn*mn + 2*mn + mx.
- *> If JOBZ = 'S', LWORK >= mn*mn + 3*mn.
- *> If JOBZ = 'A', LWORK >= mn*mn + 2*mn + mx.
- *> These are not tight minimums in all cases; see comments inside code.
- *> For good performance, LWORK should generally be larger;
- *> a query is recommended.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
- *> Let mx = max(M,N) and mn = min(M,N).
- *> If JOBZ = 'N', LRWORK >= 5*mn (LAPACK <= 3.6 needs 7*mn);
- *> else if mx >> mn, LRWORK >= 5*mn*mn + 5*mn;
- *> else LRWORK >= max( 5*mn*mn + 5*mn,
- *> 2*mx*mn + 2*mn*mn + mn ).
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (8*min(M,N))
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: The updating process of DBDSDC did not converge.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date June 2016
- *
- *> \ingroup complex16GEsing
- *
- *> \par Contributors:
- * ==================
- *>
- *> Ming Gu and Huan Ren, Computer Science Division, University of
- *> California at Berkeley, USA
- *>
- * =====================================================================
- SUBROUTINE ZGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT,
- $ WORK, LWORK, RWORK, IWORK, INFO )
- implicit none
- *
- * -- LAPACK driver routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * June 2016
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ
- INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- DOUBLE PRECISION RWORK( * ), S( * )
- COMPLEX*16 A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
- $ WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
- $ CONE = ( 1.0D+0, 0.0D+0 ) )
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, WNTQA, WNTQAS, WNTQN, WNTQO, WNTQS
- INTEGER BLK, CHUNK, I, IE, IERR, IL, IR, IRU, IRVT,
- $ ISCL, ITAU, ITAUP, ITAUQ, IU, IVT, LDWKVT,
- $ LDWRKL, LDWRKR, LDWRKU, MAXWRK, MINMN, MINWRK,
- $ MNTHR1, MNTHR2, NRWORK, NWORK, WRKBL
- INTEGER LWORK_ZGEBRD_MN, LWORK_ZGEBRD_MM,
- $ LWORK_ZGEBRD_NN, LWORK_ZGELQF_MN,
- $ LWORK_ZGEQRF_MN,
- $ LWORK_ZUNGBR_P_MN, LWORK_ZUNGBR_P_NN,
- $ LWORK_ZUNGBR_Q_MN, LWORK_ZUNGBR_Q_MM,
- $ LWORK_ZUNGLQ_MN, LWORK_ZUNGLQ_NN,
- $ LWORK_ZUNGQR_MM, LWORK_ZUNGQR_MN,
- $ LWORK_ZUNMBR_PRC_MM, LWORK_ZUNMBR_QLN_MM,
- $ LWORK_ZUNMBR_PRC_MN, LWORK_ZUNMBR_QLN_MN,
- $ LWORK_ZUNMBR_PRC_NN, LWORK_ZUNMBR_QLN_NN
- DOUBLE PRECISION ANRM, BIGNUM, EPS, SMLNUM
- * ..
- * .. Local Arrays ..
- INTEGER IDUM( 1 )
- DOUBLE PRECISION DUM( 1 )
- COMPLEX*16 CDUM( 1 )
- * ..
- * .. External Subroutines ..
- EXTERNAL DBDSDC, DLASCL, XERBLA, ZGEBRD, ZGELQF, ZGEMM,
- $ ZGEQRF, ZLACP2, ZLACPY, ZLACRM, ZLARCM, ZLASCL,
- $ ZLASET, ZUNGBR, ZUNGLQ, ZUNGQR, ZUNMBR
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, ZLANGE
- EXTERNAL LSAME, DLAMCH, ZLANGE
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC INT, MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- MINMN = MIN( M, N )
- MNTHR1 = INT( MINMN*17.0D0 / 9.0D0 )
- MNTHR2 = INT( MINMN*5.0D0 / 3.0D0 )
- WNTQA = LSAME( JOBZ, 'A' )
- WNTQS = LSAME( JOBZ, 'S' )
- WNTQAS = WNTQA .OR. WNTQS
- WNTQO = LSAME( JOBZ, 'O' )
- WNTQN = LSAME( JOBZ, 'N' )
- LQUERY = ( LWORK.EQ.-1 )
- MINWRK = 1
- MAXWRK = 1
- *
- IF( .NOT.( WNTQA .OR. WNTQS .OR. WNTQO .OR. WNTQN ) ) THEN
- INFO = -1
- ELSE IF( M.LT.0 ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -5
- ELSE IF( LDU.LT.1 .OR. ( WNTQAS .AND. LDU.LT.M ) .OR.
- $ ( WNTQO .AND. M.LT.N .AND. LDU.LT.M ) ) THEN
- INFO = -8
- ELSE IF( LDVT.LT.1 .OR. ( WNTQA .AND. LDVT.LT.N ) .OR.
- $ ( WNTQS .AND. LDVT.LT.MINMN ) .OR.
- $ ( WNTQO .AND. M.GE.N .AND. LDVT.LT.N ) ) THEN
- INFO = -10
- END IF
- *
- * Compute workspace
- * Note: Comments in the code beginning "Workspace:" describe the
- * minimal amount of workspace allocated at that point in the code,
- * as well as the preferred amount for good performance.
- * CWorkspace refers to complex workspace, and RWorkspace to
- * real workspace. NB refers to the optimal block size for the
- * immediately following subroutine, as returned by ILAENV.)
- *
- IF( INFO.EQ.0 ) THEN
- MINWRK = 1
- MAXWRK = 1
- IF( M.GE.N .AND. MINMN.GT.0 ) THEN
- *
- * There is no complex work space needed for bidiagonal SVD
- * The real work space needed for bidiagonal SVD (dbdsdc) is
- * BDSPAC = 3*N*N + 4*N for singular values and vectors;
- * BDSPAC = 4*N for singular values only;
- * not including e, RU, and RVT matrices.
- *
- * Compute space preferred for each routine
- CALL ZGEBRD( M, N, CDUM(1), M, DUM(1), DUM(1), CDUM(1),
- $ CDUM(1), CDUM(1), -1, IERR )
- LWORK_ZGEBRD_MN = INT( CDUM(1) )
- *
- CALL ZGEBRD( N, N, CDUM(1), N, DUM(1), DUM(1), CDUM(1),
- $ CDUM(1), CDUM(1), -1, IERR )
- LWORK_ZGEBRD_NN = INT( CDUM(1) )
- *
- CALL ZGEQRF( M, N, CDUM(1), M, CDUM(1), CDUM(1), -1, IERR )
- LWORK_ZGEQRF_MN = INT( CDUM(1) )
- *
- CALL ZUNGBR( 'P', N, N, N, CDUM(1), N, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_ZUNGBR_P_NN = INT( CDUM(1) )
- *
- CALL ZUNGBR( 'Q', M, M, N, CDUM(1), M, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_ZUNGBR_Q_MM = INT( CDUM(1) )
- *
- CALL ZUNGBR( 'Q', M, N, N, CDUM(1), M, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_ZUNGBR_Q_MN = INT( CDUM(1) )
- *
- CALL ZUNGQR( M, M, N, CDUM(1), M, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_ZUNGQR_MM = INT( CDUM(1) )
- *
- CALL ZUNGQR( M, N, N, CDUM(1), M, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_ZUNGQR_MN = INT( CDUM(1) )
- *
- CALL ZUNMBR( 'P', 'R', 'C', N, N, N, CDUM(1), N, CDUM(1),
- $ CDUM(1), N, CDUM(1), -1, IERR )
- LWORK_ZUNMBR_PRC_NN = INT( CDUM(1) )
- *
- CALL ZUNMBR( 'Q', 'L', 'N', M, M, N, CDUM(1), M, CDUM(1),
- $ CDUM(1), M, CDUM(1), -1, IERR )
- LWORK_ZUNMBR_QLN_MM = INT( CDUM(1) )
- *
- CALL ZUNMBR( 'Q', 'L', 'N', M, N, N, CDUM(1), M, CDUM(1),
- $ CDUM(1), M, CDUM(1), -1, IERR )
- LWORK_ZUNMBR_QLN_MN = INT( CDUM(1) )
- *
- CALL ZUNMBR( 'Q', 'L', 'N', N, N, N, CDUM(1), N, CDUM(1),
- $ CDUM(1), N, CDUM(1), -1, IERR )
- LWORK_ZUNMBR_QLN_NN = INT( CDUM(1) )
- *
- IF( M.GE.MNTHR1 ) THEN
- IF( WNTQN ) THEN
- *
- * Path 1 (M >> N, JOBZ='N')
- *
- MAXWRK = N + LWORK_ZGEQRF_MN
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZGEBRD_NN )
- MINWRK = 3*N
- ELSE IF( WNTQO ) THEN
- *
- * Path 2 (M >> N, JOBZ='O')
- *
- WRKBL = N + LWORK_ZGEQRF_MN
- WRKBL = MAX( WRKBL, N + LWORK_ZUNGQR_MN )
- WRKBL = MAX( WRKBL, 2*N + LWORK_ZGEBRD_NN )
- WRKBL = MAX( WRKBL, 2*N + LWORK_ZUNMBR_QLN_NN )
- WRKBL = MAX( WRKBL, 2*N + LWORK_ZUNMBR_PRC_NN )
- MAXWRK = M*N + N*N + WRKBL
- MINWRK = 2*N*N + 3*N
- ELSE IF( WNTQS ) THEN
- *
- * Path 3 (M >> N, JOBZ='S')
- *
- WRKBL = N + LWORK_ZGEQRF_MN
- WRKBL = MAX( WRKBL, N + LWORK_ZUNGQR_MN )
- WRKBL = MAX( WRKBL, 2*N + LWORK_ZGEBRD_NN )
- WRKBL = MAX( WRKBL, 2*N + LWORK_ZUNMBR_QLN_NN )
- WRKBL = MAX( WRKBL, 2*N + LWORK_ZUNMBR_PRC_NN )
- MAXWRK = N*N + WRKBL
- MINWRK = N*N + 3*N
- ELSE IF( WNTQA ) THEN
- *
- * Path 4 (M >> N, JOBZ='A')
- *
- WRKBL = N + LWORK_ZGEQRF_MN
- WRKBL = MAX( WRKBL, N + LWORK_ZUNGQR_MM )
- WRKBL = MAX( WRKBL, 2*N + LWORK_ZGEBRD_NN )
- WRKBL = MAX( WRKBL, 2*N + LWORK_ZUNMBR_QLN_NN )
- WRKBL = MAX( WRKBL, 2*N + LWORK_ZUNMBR_PRC_NN )
- MAXWRK = N*N + WRKBL
- MINWRK = N*N + MAX( 3*N, N + M )
- END IF
- ELSE IF( M.GE.MNTHR2 ) THEN
- *
- * Path 5 (M >> N, but not as much as MNTHR1)
- *
- MAXWRK = 2*N + LWORK_ZGEBRD_MN
- MINWRK = 2*N + M
- IF( WNTQO ) THEN
- * Path 5o (M >> N, JOBZ='O')
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNGBR_P_NN )
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNGBR_Q_MN )
- MAXWRK = MAXWRK + M*N
- MINWRK = MINWRK + N*N
- ELSE IF( WNTQS ) THEN
- * Path 5s (M >> N, JOBZ='S')
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNGBR_P_NN )
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNGBR_Q_MN )
- ELSE IF( WNTQA ) THEN
- * Path 5a (M >> N, JOBZ='A')
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNGBR_P_NN )
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNGBR_Q_MM )
- END IF
- ELSE
- *
- * Path 6 (M >= N, but not much larger)
- *
- MAXWRK = 2*N + LWORK_ZGEBRD_MN
- MINWRK = 2*N + M
- IF( WNTQO ) THEN
- * Path 6o (M >= N, JOBZ='O')
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNMBR_PRC_NN )
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNMBR_QLN_MN )
- MAXWRK = MAXWRK + M*N
- MINWRK = MINWRK + N*N
- ELSE IF( WNTQS ) THEN
- * Path 6s (M >= N, JOBZ='S')
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNMBR_QLN_MN )
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNMBR_PRC_NN )
- ELSE IF( WNTQA ) THEN
- * Path 6a (M >= N, JOBZ='A')
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNMBR_QLN_MM )
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNMBR_PRC_NN )
- END IF
- END IF
- ELSE IF( MINMN.GT.0 ) THEN
- *
- * There is no complex work space needed for bidiagonal SVD
- * The real work space needed for bidiagonal SVD (dbdsdc) is
- * BDSPAC = 3*M*M + 4*M for singular values and vectors;
- * BDSPAC = 4*M for singular values only;
- * not including e, RU, and RVT matrices.
- *
- * Compute space preferred for each routine
- CALL ZGEBRD( M, N, CDUM(1), M, DUM(1), DUM(1), CDUM(1),
- $ CDUM(1), CDUM(1), -1, IERR )
- LWORK_ZGEBRD_MN = INT( CDUM(1) )
- *
- CALL ZGEBRD( M, M, CDUM(1), M, DUM(1), DUM(1), CDUM(1),
- $ CDUM(1), CDUM(1), -1, IERR )
- LWORK_ZGEBRD_MM = INT( CDUM(1) )
- *
- CALL ZGELQF( M, N, CDUM(1), M, CDUM(1), CDUM(1), -1, IERR )
- LWORK_ZGELQF_MN = INT( CDUM(1) )
- *
- CALL ZUNGBR( 'P', M, N, M, CDUM(1), M, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_ZUNGBR_P_MN = INT( CDUM(1) )
- *
- CALL ZUNGBR( 'P', N, N, M, CDUM(1), N, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_ZUNGBR_P_NN = INT( CDUM(1) )
- *
- CALL ZUNGBR( 'Q', M, M, N, CDUM(1), M, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_ZUNGBR_Q_MM = INT( CDUM(1) )
- *
- CALL ZUNGLQ( M, N, M, CDUM(1), M, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_ZUNGLQ_MN = INT( CDUM(1) )
- *
- CALL ZUNGLQ( N, N, M, CDUM(1), N, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_ZUNGLQ_NN = INT( CDUM(1) )
- *
- CALL ZUNMBR( 'P', 'R', 'C', M, M, M, CDUM(1), M, CDUM(1),
- $ CDUM(1), M, CDUM(1), -1, IERR )
- LWORK_ZUNMBR_PRC_MM = INT( CDUM(1) )
- *
- CALL ZUNMBR( 'P', 'R', 'C', M, N, M, CDUM(1), M, CDUM(1),
- $ CDUM(1), M, CDUM(1), -1, IERR )
- LWORK_ZUNMBR_PRC_MN = INT( CDUM(1) )
- *
- CALL ZUNMBR( 'P', 'R', 'C', N, N, M, CDUM(1), N, CDUM(1),
- $ CDUM(1), N, CDUM(1), -1, IERR )
- LWORK_ZUNMBR_PRC_NN = INT( CDUM(1) )
- *
- CALL ZUNMBR( 'Q', 'L', 'N', M, M, M, CDUM(1), M, CDUM(1),
- $ CDUM(1), M, CDUM(1), -1, IERR )
- LWORK_ZUNMBR_QLN_MM = INT( CDUM(1) )
- *
- IF( N.GE.MNTHR1 ) THEN
- IF( WNTQN ) THEN
- *
- * Path 1t (N >> M, JOBZ='N')
- *
- MAXWRK = M + LWORK_ZGELQF_MN
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZGEBRD_MM )
- MINWRK = 3*M
- ELSE IF( WNTQO ) THEN
- *
- * Path 2t (N >> M, JOBZ='O')
- *
- WRKBL = M + LWORK_ZGELQF_MN
- WRKBL = MAX( WRKBL, M + LWORK_ZUNGLQ_MN )
- WRKBL = MAX( WRKBL, 2*M + LWORK_ZGEBRD_MM )
- WRKBL = MAX( WRKBL, 2*M + LWORK_ZUNMBR_QLN_MM )
- WRKBL = MAX( WRKBL, 2*M + LWORK_ZUNMBR_PRC_MM )
- MAXWRK = M*N + M*M + WRKBL
- MINWRK = 2*M*M + 3*M
- ELSE IF( WNTQS ) THEN
- *
- * Path 3t (N >> M, JOBZ='S')
- *
- WRKBL = M + LWORK_ZGELQF_MN
- WRKBL = MAX( WRKBL, M + LWORK_ZUNGLQ_MN )
- WRKBL = MAX( WRKBL, 2*M + LWORK_ZGEBRD_MM )
- WRKBL = MAX( WRKBL, 2*M + LWORK_ZUNMBR_QLN_MM )
- WRKBL = MAX( WRKBL, 2*M + LWORK_ZUNMBR_PRC_MM )
- MAXWRK = M*M + WRKBL
- MINWRK = M*M + 3*M
- ELSE IF( WNTQA ) THEN
- *
- * Path 4t (N >> M, JOBZ='A')
- *
- WRKBL = M + LWORK_ZGELQF_MN
- WRKBL = MAX( WRKBL, M + LWORK_ZUNGLQ_NN )
- WRKBL = MAX( WRKBL, 2*M + LWORK_ZGEBRD_MM )
- WRKBL = MAX( WRKBL, 2*M + LWORK_ZUNMBR_QLN_MM )
- WRKBL = MAX( WRKBL, 2*M + LWORK_ZUNMBR_PRC_MM )
- MAXWRK = M*M + WRKBL
- MINWRK = M*M + MAX( 3*M, M + N )
- END IF
- ELSE IF( N.GE.MNTHR2 ) THEN
- *
- * Path 5t (N >> M, but not as much as MNTHR1)
- *
- MAXWRK = 2*M + LWORK_ZGEBRD_MN
- MINWRK = 2*M + N
- IF( WNTQO ) THEN
- * Path 5to (N >> M, JOBZ='O')
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNGBR_Q_MM )
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNGBR_P_MN )
- MAXWRK = MAXWRK + M*N
- MINWRK = MINWRK + M*M
- ELSE IF( WNTQS ) THEN
- * Path 5ts (N >> M, JOBZ='S')
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNGBR_Q_MM )
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNGBR_P_MN )
- ELSE IF( WNTQA ) THEN
- * Path 5ta (N >> M, JOBZ='A')
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNGBR_Q_MM )
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNGBR_P_NN )
- END IF
- ELSE
- *
- * Path 6t (N > M, but not much larger)
- *
- MAXWRK = 2*M + LWORK_ZGEBRD_MN
- MINWRK = 2*M + N
- IF( WNTQO ) THEN
- * Path 6to (N > M, JOBZ='O')
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNMBR_QLN_MM )
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNMBR_PRC_MN )
- MAXWRK = MAXWRK + M*N
- MINWRK = MINWRK + M*M
- ELSE IF( WNTQS ) THEN
- * Path 6ts (N > M, JOBZ='S')
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNMBR_QLN_MM )
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNMBR_PRC_MN )
- ELSE IF( WNTQA ) THEN
- * Path 6ta (N > M, JOBZ='A')
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNMBR_QLN_MM )
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNMBR_PRC_NN )
- END IF
- END IF
- END IF
- MAXWRK = MAX( MAXWRK, MINWRK )
- END IF
- IF( INFO.EQ.0 ) THEN
- WORK( 1 ) = MAXWRK
- IF( LWORK.LT.MINWRK .AND. .NOT. LQUERY ) THEN
- INFO = -12
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZGESDD', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 ) THEN
- RETURN
- END IF
- *
- * Get machine constants
- *
- EPS = DLAMCH( 'P' )
- SMLNUM = SQRT( DLAMCH( 'S' ) ) / EPS
- BIGNUM = ONE / SMLNUM
- *
- * Scale A if max element outside range [SMLNUM,BIGNUM]
- *
- ANRM = ZLANGE( 'M', M, N, A, LDA, DUM )
- ISCL = 0
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- ISCL = 1
- CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, IERR )
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- ISCL = 1
- CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, IERR )
- END IF
- *
- IF( M.GE.N ) THEN
- *
- * A has at least as many rows as columns. If A has sufficiently
- * more rows than columns, first reduce using the QR
- * decomposition (if sufficient workspace available)
- *
- IF( M.GE.MNTHR1 ) THEN
- *
- IF( WNTQN ) THEN
- *
- * Path 1 (M >> N, JOBZ='N')
- * No singular vectors to be computed
- *
- ITAU = 1
- NWORK = ITAU + N
- *
- * Compute A=Q*R
- * CWorkspace: need N [tau] + N [work]
- * CWorkspace: prefer N [tau] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Zero out below R
- *
- CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
- $ LDA )
- IE = 1
- ITAUQ = 1
- ITAUP = ITAUQ + N
- NWORK = ITAUP + N
- *
- * Bidiagonalize R in A
- * CWorkspace: need 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + 2*N*NB [work]
- * RWorkspace: need N [e]
- *
- CALL ZGEBRD( N, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
- $ IERR )
- NRWORK = IE + N
- *
- * Perform bidiagonal SVD, compute singular values only
- * CWorkspace: need 0
- * RWorkspace: need N [e] + BDSPAC
- *
- CALL DBDSDC( 'U', 'N', N, S, RWORK( IE ), DUM,1,DUM,1,
- $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
- *
- ELSE IF( WNTQO ) THEN
- *
- * Path 2 (M >> N, JOBZ='O')
- * N left singular vectors to be overwritten on A and
- * N right singular vectors to be computed in VT
- *
- IU = 1
- *
- * WORK(IU) is N by N
- *
- LDWRKU = N
- IR = IU + LDWRKU*N
- IF( LWORK .GE. M*N + N*N + 3*N ) THEN
- *
- * WORK(IR) is M by N
- *
- LDWRKR = M
- ELSE
- LDWRKR = ( LWORK - N*N - 3*N ) / N
- END IF
- ITAU = IR + LDWRKR*N
- NWORK = ITAU + N
- *
- * Compute A=Q*R
- * CWorkspace: need N*N [U] + N*N [R] + N [tau] + N [work]
- * CWorkspace: prefer N*N [U] + N*N [R] + N [tau] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy R to WORK( IR ), zeroing out below it
- *
- CALL ZLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
- CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, WORK( IR+1 ),
- $ LDWRKR )
- *
- * Generate Q in A
- * CWorkspace: need N*N [U] + N*N [R] + N [tau] + N [work]
- * CWorkspace: prefer N*N [U] + N*N [R] + N [tau] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- NWORK = ITAUP + N
- *
- * Bidiagonalize R in WORK(IR)
- * CWorkspace: need N*N [U] + N*N [R] + 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer N*N [U] + N*N [R] + 2*N [tauq, taup] + 2*N*NB [work]
- * RWorkspace: need N [e]
- *
- CALL ZGEBRD( N, N, WORK( IR ), LDWRKR, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of R in WORK(IRU) and computing right singular vectors
- * of R in WORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
- *
- IRU = IE + N
- IRVT = IRU + N*N
- NRWORK = IRVT + N*N
- CALL DBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
- $ N, RWORK( IRVT ), N, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
- * Overwrite WORK(IU) by the left singular vectors of R
- * CWorkspace: need N*N [U] + N*N [R] + 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer N*N [U] + N*N [R] + 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACP2( 'F', N, N, RWORK( IRU ), N, WORK( IU ),
- $ LDWRKU )
- CALL ZUNMBR( 'Q', 'L', 'N', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUQ ), WORK( IU ), LDWRKU,
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix VT
- * Overwrite VT by the right singular vectors of R
- * CWorkspace: need N*N [U] + N*N [R] + 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer N*N [U] + N*N [R] + 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
- CALL ZUNMBR( 'P', 'R', 'C', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Multiply Q in A by left singular vectors of R in
- * WORK(IU), storing result in WORK(IR) and copying to A
- * CWorkspace: need N*N [U] + N*N [R]
- * CWorkspace: prefer N*N [U] + M*N [R]
- * RWorkspace: need 0
- *
- DO 10 I = 1, M, LDWRKR
- CHUNK = MIN( M-I+1, LDWRKR )
- CALL ZGEMM( 'N', 'N', CHUNK, N, N, CONE, A( I, 1 ),
- $ LDA, WORK( IU ), LDWRKU, CZERO,
- $ WORK( IR ), LDWRKR )
- CALL ZLACPY( 'F', CHUNK, N, WORK( IR ), LDWRKR,
- $ A( I, 1 ), LDA )
- 10 CONTINUE
- *
- ELSE IF( WNTQS ) THEN
- *
- * Path 3 (M >> N, JOBZ='S')
- * N left singular vectors to be computed in U and
- * N right singular vectors to be computed in VT
- *
- IR = 1
- *
- * WORK(IR) is N by N
- *
- LDWRKR = N
- ITAU = IR + LDWRKR*N
- NWORK = ITAU + N
- *
- * Compute A=Q*R
- * CWorkspace: need N*N [R] + N [tau] + N [work]
- * CWorkspace: prefer N*N [R] + N [tau] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy R to WORK(IR), zeroing out below it
- *
- CALL ZLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
- CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, WORK( IR+1 ),
- $ LDWRKR )
- *
- * Generate Q in A
- * CWorkspace: need N*N [R] + N [tau] + N [work]
- * CWorkspace: prefer N*N [R] + N [tau] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- NWORK = ITAUP + N
- *
- * Bidiagonalize R in WORK(IR)
- * CWorkspace: need N*N [R] + 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer N*N [R] + 2*N [tauq, taup] + 2*N*NB [work]
- * RWorkspace: need N [e]
- *
- CALL ZGEBRD( N, N, WORK( IR ), LDWRKR, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
- *
- IRU = IE + N
- IRVT = IRU + N*N
- NRWORK = IRVT + N*N
- CALL DBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
- $ N, RWORK( IRVT ), N, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix U
- * Overwrite U by left singular vectors of R
- * CWorkspace: need N*N [R] + 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer N*N [R] + 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACP2( 'F', N, N, RWORK( IRU ), N, U, LDU )
- CALL ZUNMBR( 'Q', 'L', 'N', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix VT
- * Overwrite VT by right singular vectors of R
- * CWorkspace: need N*N [R] + 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer N*N [R] + 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
- CALL ZUNMBR( 'P', 'R', 'C', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Multiply Q in A by left singular vectors of R in
- * WORK(IR), storing result in U
- * CWorkspace: need N*N [R]
- * RWorkspace: need 0
- *
- CALL ZLACPY( 'F', N, N, U, LDU, WORK( IR ), LDWRKR )
- CALL ZGEMM( 'N', 'N', M, N, N, CONE, A, LDA, WORK( IR ),
- $ LDWRKR, CZERO, U, LDU )
- *
- ELSE IF( WNTQA ) THEN
- *
- * Path 4 (M >> N, JOBZ='A')
- * M left singular vectors to be computed in U and
- * N right singular vectors to be computed in VT
- *
- IU = 1
- *
- * WORK(IU) is N by N
- *
- LDWRKU = N
- ITAU = IU + LDWRKU*N
- NWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * CWorkspace: need N*N [U] + N [tau] + N [work]
- * CWorkspace: prefer N*N [U] + N [tau] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Generate Q in U
- * CWorkspace: need N*N [U] + N [tau] + M [work]
- * CWorkspace: prefer N*N [U] + N [tau] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Produce R in A, zeroing out below it
- *
- CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
- $ LDA )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- NWORK = ITAUP + N
- *
- * Bidiagonalize R in A
- * CWorkspace: need N*N [U] + 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer N*N [U] + 2*N [tauq, taup] + 2*N*NB [work]
- * RWorkspace: need N [e]
- *
- CALL ZGEBRD( N, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
- $ IERR )
- IRU = IE + N
- IRVT = IRU + N*N
- NRWORK = IRVT + N*N
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
- *
- CALL DBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
- $ N, RWORK( IRVT ), N, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
- * Overwrite WORK(IU) by left singular vectors of R
- * CWorkspace: need N*N [U] + 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer N*N [U] + 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACP2( 'F', N, N, RWORK( IRU ), N, WORK( IU ),
- $ LDWRKU )
- CALL ZUNMBR( 'Q', 'L', 'N', N, N, N, A, LDA,
- $ WORK( ITAUQ ), WORK( IU ), LDWRKU,
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix VT
- * Overwrite VT by right singular vectors of R
- * CWorkspace: need N*N [U] + 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer N*N [U] + 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
- CALL ZUNMBR( 'P', 'R', 'C', N, N, N, A, LDA,
- $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Multiply Q in U by left singular vectors of R in
- * WORK(IU), storing result in A
- * CWorkspace: need N*N [U]
- * RWorkspace: need 0
- *
- CALL ZGEMM( 'N', 'N', M, N, N, CONE, U, LDU, WORK( IU ),
- $ LDWRKU, CZERO, A, LDA )
- *
- * Copy left singular vectors of A from A to U
- *
- CALL ZLACPY( 'F', M, N, A, LDA, U, LDU )
- *
- END IF
- *
- ELSE IF( M.GE.MNTHR2 ) THEN
- *
- * MNTHR2 <= M < MNTHR1
- *
- * Path 5 (M >> N, but not as much as MNTHR1)
- * Reduce to bidiagonal form without QR decomposition, use
- * ZUNGBR and matrix multiplication to compute singular vectors
- *
- IE = 1
- NRWORK = IE + N
- ITAUQ = 1
- ITAUP = ITAUQ + N
- NWORK = ITAUP + N
- *
- * Bidiagonalize A
- * CWorkspace: need 2*N [tauq, taup] + M [work]
- * CWorkspace: prefer 2*N [tauq, taup] + (M+N)*NB [work]
- * RWorkspace: need N [e]
- *
- CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
- $ IERR )
- IF( WNTQN ) THEN
- *
- * Path 5n (M >> N, JOBZ='N')
- * Compute singular values only
- * CWorkspace: need 0
- * RWorkspace: need N [e] + BDSPAC
- *
- CALL DBDSDC( 'U', 'N', N, S, RWORK( IE ), DUM, 1,DUM,1,
- $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
- ELSE IF( WNTQO ) THEN
- IU = NWORK
- IRU = NRWORK
- IRVT = IRU + N*N
- NRWORK = IRVT + N*N
- *
- * Path 5o (M >> N, JOBZ='O')
- * Copy A to VT, generate P**H
- * CWorkspace: need 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACPY( 'U', N, N, A, LDA, VT, LDVT )
- CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Generate Q in A
- * CWorkspace: need 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- IF( LWORK .GE. M*N + 3*N ) THEN
- *
- * WORK( IU ) is M by N
- *
- LDWRKU = M
- ELSE
- *
- * WORK(IU) is LDWRKU by N
- *
- LDWRKU = ( LWORK - 3*N ) / N
- END IF
- NWORK = IU + LDWRKU*N
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
- *
- CALL DBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
- $ N, RWORK( IRVT ), N, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Multiply real matrix RWORK(IRVT) by P**H in VT,
- * storing the result in WORK(IU), copying to VT
- * CWorkspace: need 2*N [tauq, taup] + N*N [U]
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + 2*N*N [rwork]
- *
- CALL ZLARCM( N, N, RWORK( IRVT ), N, VT, LDVT,
- $ WORK( IU ), LDWRKU, RWORK( NRWORK ) )
- CALL ZLACPY( 'F', N, N, WORK( IU ), LDWRKU, VT, LDVT )
- *
- * Multiply Q in A by real matrix RWORK(IRU), storing the
- * result in WORK(IU), copying to A
- * CWorkspace: need 2*N [tauq, taup] + N*N [U]
- * CWorkspace: prefer 2*N [tauq, taup] + M*N [U]
- * RWorkspace: need N [e] + N*N [RU] + 2*N*N [rwork]
- * RWorkspace: prefer N [e] + N*N [RU] + 2*M*N [rwork] < N + 5*N*N since M < 2*N here
- *
- NRWORK = IRVT
- DO 20 I = 1, M, LDWRKU
- CHUNK = MIN( M-I+1, LDWRKU )
- CALL ZLACRM( CHUNK, N, A( I, 1 ), LDA, RWORK( IRU ),
- $ N, WORK( IU ), LDWRKU, RWORK( NRWORK ) )
- CALL ZLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
- $ A( I, 1 ), LDA )
- 20 CONTINUE
- *
- ELSE IF( WNTQS ) THEN
- *
- * Path 5s (M >> N, JOBZ='S')
- * Copy A to VT, generate P**H
- * CWorkspace: need 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACPY( 'U', N, N, A, LDA, VT, LDVT )
- CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Copy A to U, generate Q
- * CWorkspace: need 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
- CALL ZUNGBR( 'Q', M, N, N, U, LDU, WORK( ITAUQ ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
- *
- IRU = NRWORK
- IRVT = IRU + N*N
- NRWORK = IRVT + N*N
- CALL DBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
- $ N, RWORK( IRVT ), N, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Multiply real matrix RWORK(IRVT) by P**H in VT,
- * storing the result in A, copying to VT
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + 2*N*N [rwork]
- *
- CALL ZLARCM( N, N, RWORK( IRVT ), N, VT, LDVT, A, LDA,
- $ RWORK( NRWORK ) )
- CALL ZLACPY( 'F', N, N, A, LDA, VT, LDVT )
- *
- * Multiply Q in U by real matrix RWORK(IRU), storing the
- * result in A, copying to U
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + 2*M*N [rwork] < N + 5*N*N since M < 2*N here
- *
- NRWORK = IRVT
- CALL ZLACRM( M, N, U, LDU, RWORK( IRU ), N, A, LDA,
- $ RWORK( NRWORK ) )
- CALL ZLACPY( 'F', M, N, A, LDA, U, LDU )
- ELSE
- *
- * Path 5a (M >> N, JOBZ='A')
- * Copy A to VT, generate P**H
- * CWorkspace: need 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACPY( 'U', N, N, A, LDA, VT, LDVT )
- CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Copy A to U, generate Q
- * CWorkspace: need 2*N [tauq, taup] + M [work]
- * CWorkspace: prefer 2*N [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
- CALL ZUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
- *
- IRU = NRWORK
- IRVT = IRU + N*N
- NRWORK = IRVT + N*N
- CALL DBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
- $ N, RWORK( IRVT ), N, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Multiply real matrix RWORK(IRVT) by P**H in VT,
- * storing the result in A, copying to VT
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + 2*N*N [rwork]
- *
- CALL ZLARCM( N, N, RWORK( IRVT ), N, VT, LDVT, A, LDA,
- $ RWORK( NRWORK ) )
- CALL ZLACPY( 'F', N, N, A, LDA, VT, LDVT )
- *
- * Multiply Q in U by real matrix RWORK(IRU), storing the
- * result in A, copying to U
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + 2*M*N [rwork] < N + 5*N*N since M < 2*N here
- *
- NRWORK = IRVT
- CALL ZLACRM( M, N, U, LDU, RWORK( IRU ), N, A, LDA,
- $ RWORK( NRWORK ) )
- CALL ZLACPY( 'F', M, N, A, LDA, U, LDU )
- END IF
- *
- ELSE
- *
- * M .LT. MNTHR2
- *
- * Path 6 (M >= N, but not much larger)
- * Reduce to bidiagonal form without QR decomposition
- * Use ZUNMBR to compute singular vectors
- *
- IE = 1
- NRWORK = IE + N
- ITAUQ = 1
- ITAUP = ITAUQ + N
- NWORK = ITAUP + N
- *
- * Bidiagonalize A
- * CWorkspace: need 2*N [tauq, taup] + M [work]
- * CWorkspace: prefer 2*N [tauq, taup] + (M+N)*NB [work]
- * RWorkspace: need N [e]
- *
- CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
- $ IERR )
- IF( WNTQN ) THEN
- *
- * Path 6n (M >= N, JOBZ='N')
- * Compute singular values only
- * CWorkspace: need 0
- * RWorkspace: need N [e] + BDSPAC
- *
- CALL DBDSDC( 'U', 'N', N, S, RWORK( IE ), DUM,1,DUM,1,
- $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
- ELSE IF( WNTQO ) THEN
- IU = NWORK
- IRU = NRWORK
- IRVT = IRU + N*N
- NRWORK = IRVT + N*N
- IF( LWORK .GE. M*N + 3*N ) THEN
- *
- * WORK( IU ) is M by N
- *
- LDWRKU = M
- ELSE
- *
- * WORK( IU ) is LDWRKU by N
- *
- LDWRKU = ( LWORK - 3*N ) / N
- END IF
- NWORK = IU + LDWRKU*N
- *
- * Path 6o (M >= N, JOBZ='O')
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
- *
- CALL DBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
- $ N, RWORK( IRVT ), N, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix VT
- * Overwrite VT by right singular vectors of A
- * CWorkspace: need 2*N [tauq, taup] + N*N [U] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*N [U] + N*NB [work]
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT]
- *
- CALL ZLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
- CALL ZUNMBR( 'P', 'R', 'C', N, N, N, A, LDA,
- $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- IF( LWORK .GE. M*N + 3*N ) THEN
- *
- * Path 6o-fast
- * Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
- * Overwrite WORK(IU) by left singular vectors of A, copying
- * to A
- * CWorkspace: need 2*N [tauq, taup] + M*N [U] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + M*N [U] + N*NB [work]
- * RWorkspace: need N [e] + N*N [RU]
- *
- CALL ZLASET( 'F', M, N, CZERO, CZERO, WORK( IU ),
- $ LDWRKU )
- CALL ZLACP2( 'F', N, N, RWORK( IRU ), N, WORK( IU ),
- $ LDWRKU )
- CALL ZUNMBR( 'Q', 'L', 'N', M, N, N, A, LDA,
- $ WORK( ITAUQ ), WORK( IU ), LDWRKU,
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- CALL ZLACPY( 'F', M, N, WORK( IU ), LDWRKU, A, LDA )
- ELSE
- *
- * Path 6o-slow
- * Generate Q in A
- * CWorkspace: need 2*N [tauq, taup] + N*N [U] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*N [U] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Multiply Q in A by real matrix RWORK(IRU), storing the
- * result in WORK(IU), copying to A
- * CWorkspace: need 2*N [tauq, taup] + N*N [U]
- * CWorkspace: prefer 2*N [tauq, taup] + M*N [U]
- * RWorkspace: need N [e] + N*N [RU] + 2*N*N [rwork]
- * RWorkspace: prefer N [e] + N*N [RU] + 2*M*N [rwork] < N + 5*N*N since M < 2*N here
- *
- NRWORK = IRVT
- DO 30 I = 1, M, LDWRKU
- CHUNK = MIN( M-I+1, LDWRKU )
- CALL ZLACRM( CHUNK, N, A( I, 1 ), LDA,
- $ RWORK( IRU ), N, WORK( IU ), LDWRKU,
- $ RWORK( NRWORK ) )
- CALL ZLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
- $ A( I, 1 ), LDA )
- 30 CONTINUE
- END IF
- *
- ELSE IF( WNTQS ) THEN
- *
- * Path 6s (M >= N, JOBZ='S')
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
- *
- IRU = NRWORK
- IRVT = IRU + N*N
- NRWORK = IRVT + N*N
- CALL DBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
- $ N, RWORK( IRVT ), N, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix U
- * Overwrite U by left singular vectors of A
- * CWorkspace: need 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT]
- *
- CALL ZLASET( 'F', M, N, CZERO, CZERO, U, LDU )
- CALL ZLACP2( 'F', N, N, RWORK( IRU ), N, U, LDU )
- CALL ZUNMBR( 'Q', 'L', 'N', M, N, N, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix VT
- * Overwrite VT by right singular vectors of A
- * CWorkspace: need 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT]
- *
- CALL ZLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
- CALL ZUNMBR( 'P', 'R', 'C', N, N, N, A, LDA,
- $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- ELSE
- *
- * Path 6a (M >= N, JOBZ='A')
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
- *
- IRU = NRWORK
- IRVT = IRU + N*N
- NRWORK = IRVT + N*N
- CALL DBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
- $ N, RWORK( IRVT ), N, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Set the right corner of U to identity matrix
- *
- CALL ZLASET( 'F', M, M, CZERO, CZERO, U, LDU )
- IF( M.GT.N ) THEN
- CALL ZLASET( 'F', M-N, M-N, CZERO, CONE,
- $ U( N+1, N+1 ), LDU )
- END IF
- *
- * Copy real matrix RWORK(IRU) to complex matrix U
- * Overwrite U by left singular vectors of A
- * CWorkspace: need 2*N [tauq, taup] + M [work]
- * CWorkspace: prefer 2*N [tauq, taup] + M*NB [work]
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT]
- *
- CALL ZLACP2( 'F', N, N, RWORK( IRU ), N, U, LDU )
- CALL ZUNMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix VT
- * Overwrite VT by right singular vectors of A
- * CWorkspace: need 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT]
- *
- CALL ZLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
- CALL ZUNMBR( 'P', 'R', 'C', N, N, N, A, LDA,
- $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- END IF
- *
- END IF
- *
- ELSE
- *
- * A has more columns than rows. If A has sufficiently more
- * columns than rows, first reduce using the LQ decomposition (if
- * sufficient workspace available)
- *
- IF( N.GE.MNTHR1 ) THEN
- *
- IF( WNTQN ) THEN
- *
- * Path 1t (N >> M, JOBZ='N')
- * No singular vectors to be computed
- *
- ITAU = 1
- NWORK = ITAU + M
- *
- * Compute A=L*Q
- * CWorkspace: need M [tau] + M [work]
- * CWorkspace: prefer M [tau] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Zero out above L
- *
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, A( 1, 2 ),
- $ LDA )
- IE = 1
- ITAUQ = 1
- ITAUP = ITAUQ + M
- NWORK = ITAUP + M
- *
- * Bidiagonalize L in A
- * CWorkspace: need 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + 2*M*NB [work]
- * RWorkspace: need M [e]
- *
- CALL ZGEBRD( M, M, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
- $ IERR )
- NRWORK = IE + M
- *
- * Perform bidiagonal SVD, compute singular values only
- * CWorkspace: need 0
- * RWorkspace: need M [e] + BDSPAC
- *
- CALL DBDSDC( 'U', 'N', M, S, RWORK( IE ), DUM,1,DUM,1,
- $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
- *
- ELSE IF( WNTQO ) THEN
- *
- * Path 2t (N >> M, JOBZ='O')
- * M right singular vectors to be overwritten on A and
- * M left singular vectors to be computed in U
- *
- IVT = 1
- LDWKVT = M
- *
- * WORK(IVT) is M by M
- *
- IL = IVT + LDWKVT*M
- IF( LWORK .GE. M*N + M*M + 3*M ) THEN
- *
- * WORK(IL) M by N
- *
- LDWRKL = M
- CHUNK = N
- ELSE
- *
- * WORK(IL) is M by CHUNK
- *
- LDWRKL = M
- CHUNK = ( LWORK - M*M - 3*M ) / M
- END IF
- ITAU = IL + LDWRKL*CHUNK
- NWORK = ITAU + M
- *
- * Compute A=L*Q
- * CWorkspace: need M*M [VT] + M*M [L] + M [tau] + M [work]
- * CWorkspace: prefer M*M [VT] + M*M [L] + M [tau] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy L to WORK(IL), zeroing about above it
- *
- CALL ZLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWRKL )
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ WORK( IL+LDWRKL ), LDWRKL )
- *
- * Generate Q in A
- * CWorkspace: need M*M [VT] + M*M [L] + M [tau] + M [work]
- * CWorkspace: prefer M*M [VT] + M*M [L] + M [tau] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- NWORK = ITAUP + M
- *
- * Bidiagonalize L in WORK(IL)
- * CWorkspace: need M*M [VT] + M*M [L] + 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer M*M [VT] + M*M [L] + 2*M [tauq, taup] + 2*M*NB [work]
- * RWorkspace: need M [e]
- *
- CALL ZGEBRD( M, M, WORK( IL ), LDWRKL, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RU] + M*M [RVT] + BDSPAC
- *
- IRU = IE + M
- IRVT = IRU + M*M
- NRWORK = IRVT + M*M
- CALL DBDSDC( 'U', 'I', M, S, RWORK( IE ), RWORK( IRU ),
- $ M, RWORK( IRVT ), M, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
- * Overwrite WORK(IU) by the left singular vectors of L
- * CWorkspace: need M*M [VT] + M*M [L] + 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer M*M [VT] + M*M [L] + 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
- CALL ZUNMBR( 'Q', 'L', 'N', M, M, M, WORK( IL ), LDWRKL,
- $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT)
- * Overwrite WORK(IVT) by the right singular vectors of L
- * CWorkspace: need M*M [VT] + M*M [L] + 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer M*M [VT] + M*M [L] + 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACP2( 'F', M, M, RWORK( IRVT ), M, WORK( IVT ),
- $ LDWKVT )
- CALL ZUNMBR( 'P', 'R', 'C', M, M, M, WORK( IL ), LDWRKL,
- $ WORK( ITAUP ), WORK( IVT ), LDWKVT,
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Multiply right singular vectors of L in WORK(IL) by Q
- * in A, storing result in WORK(IL) and copying to A
- * CWorkspace: need M*M [VT] + M*M [L]
- * CWorkspace: prefer M*M [VT] + M*N [L]
- * RWorkspace: need 0
- *
- DO 40 I = 1, N, CHUNK
- BLK = MIN( N-I+1, CHUNK )
- CALL ZGEMM( 'N', 'N', M, BLK, M, CONE, WORK( IVT ), M,
- $ A( 1, I ), LDA, CZERO, WORK( IL ),
- $ LDWRKL )
- CALL ZLACPY( 'F', M, BLK, WORK( IL ), LDWRKL,
- $ A( 1, I ), LDA )
- 40 CONTINUE
- *
- ELSE IF( WNTQS ) THEN
- *
- * Path 3t (N >> M, JOBZ='S')
- * M right singular vectors to be computed in VT and
- * M left singular vectors to be computed in U
- *
- IL = 1
- *
- * WORK(IL) is M by M
- *
- LDWRKL = M
- ITAU = IL + LDWRKL*M
- NWORK = ITAU + M
- *
- * Compute A=L*Q
- * CWorkspace: need M*M [L] + M [tau] + M [work]
- * CWorkspace: prefer M*M [L] + M [tau] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy L to WORK(IL), zeroing out above it
- *
- CALL ZLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWRKL )
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ WORK( IL+LDWRKL ), LDWRKL )
- *
- * Generate Q in A
- * CWorkspace: need M*M [L] + M [tau] + M [work]
- * CWorkspace: prefer M*M [L] + M [tau] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- NWORK = ITAUP + M
- *
- * Bidiagonalize L in WORK(IL)
- * CWorkspace: need M*M [L] + 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer M*M [L] + 2*M [tauq, taup] + 2*M*NB [work]
- * RWorkspace: need M [e]
- *
- CALL ZGEBRD( M, M, WORK( IL ), LDWRKL, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RU] + M*M [RVT] + BDSPAC
- *
- IRU = IE + M
- IRVT = IRU + M*M
- NRWORK = IRVT + M*M
- CALL DBDSDC( 'U', 'I', M, S, RWORK( IE ), RWORK( IRU ),
- $ M, RWORK( IRVT ), M, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix U
- * Overwrite U by left singular vectors of L
- * CWorkspace: need M*M [L] + 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer M*M [L] + 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
- CALL ZUNMBR( 'Q', 'L', 'N', M, M, M, WORK( IL ), LDWRKL,
- $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix VT
- * Overwrite VT by left singular vectors of L
- * CWorkspace: need M*M [L] + 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer M*M [L] + 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACP2( 'F', M, M, RWORK( IRVT ), M, VT, LDVT )
- CALL ZUNMBR( 'P', 'R', 'C', M, M, M, WORK( IL ), LDWRKL,
- $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy VT to WORK(IL), multiply right singular vectors of L
- * in WORK(IL) by Q in A, storing result in VT
- * CWorkspace: need M*M [L]
- * RWorkspace: need 0
- *
- CALL ZLACPY( 'F', M, M, VT, LDVT, WORK( IL ), LDWRKL )
- CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IL ), LDWRKL,
- $ A, LDA, CZERO, VT, LDVT )
- *
- ELSE IF( WNTQA ) THEN
- *
- * Path 4t (N >> M, JOBZ='A')
- * N right singular vectors to be computed in VT and
- * M left singular vectors to be computed in U
- *
- IVT = 1
- *
- * WORK(IVT) is M by M
- *
- LDWKVT = M
- ITAU = IVT + LDWKVT*M
- NWORK = ITAU + M
- *
- * Compute A=L*Q, copying result to VT
- * CWorkspace: need M*M [VT] + M [tau] + M [work]
- * CWorkspace: prefer M*M [VT] + M [tau] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Generate Q in VT
- * CWorkspace: need M*M [VT] + M [tau] + N [work]
- * CWorkspace: prefer M*M [VT] + M [tau] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Produce L in A, zeroing out above it
- *
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, A( 1, 2 ),
- $ LDA )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- NWORK = ITAUP + M
- *
- * Bidiagonalize L in A
- * CWorkspace: need M*M [VT] + 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer M*M [VT] + 2*M [tauq, taup] + 2*M*NB [work]
- * RWorkspace: need M [e]
- *
- CALL ZGEBRD( M, M, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
- $ IERR )
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RU] + M*M [RVT] + BDSPAC
- *
- IRU = IE + M
- IRVT = IRU + M*M
- NRWORK = IRVT + M*M
- CALL DBDSDC( 'U', 'I', M, S, RWORK( IE ), RWORK( IRU ),
- $ M, RWORK( IRVT ), M, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix U
- * Overwrite U by left singular vectors of L
- * CWorkspace: need M*M [VT] + 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer M*M [VT] + 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
- CALL ZUNMBR( 'Q', 'L', 'N', M, M, M, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT)
- * Overwrite WORK(IVT) by right singular vectors of L
- * CWorkspace: need M*M [VT] + 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer M*M [VT] + 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACP2( 'F', M, M, RWORK( IRVT ), M, WORK( IVT ),
- $ LDWKVT )
- CALL ZUNMBR( 'P', 'R', 'C', M, M, M, A, LDA,
- $ WORK( ITAUP ), WORK( IVT ), LDWKVT,
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Multiply right singular vectors of L in WORK(IVT) by
- * Q in VT, storing result in A
- * CWorkspace: need M*M [VT]
- * RWorkspace: need 0
- *
- CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IVT ), LDWKVT,
- $ VT, LDVT, CZERO, A, LDA )
- *
- * Copy right singular vectors of A from A to VT
- *
- CALL ZLACPY( 'F', M, N, A, LDA, VT, LDVT )
- *
- END IF
- *
- ELSE IF( N.GE.MNTHR2 ) THEN
- *
- * MNTHR2 <= N < MNTHR1
- *
- * Path 5t (N >> M, but not as much as MNTHR1)
- * Reduce to bidiagonal form without QR decomposition, use
- * ZUNGBR and matrix multiplication to compute singular vectors
- *
- IE = 1
- NRWORK = IE + M
- ITAUQ = 1
- ITAUP = ITAUQ + M
- NWORK = ITAUP + M
- *
- * Bidiagonalize A
- * CWorkspace: need 2*M [tauq, taup] + N [work]
- * CWorkspace: prefer 2*M [tauq, taup] + (M+N)*NB [work]
- * RWorkspace: need M [e]
- *
- CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
- $ IERR )
- *
- IF( WNTQN ) THEN
- *
- * Path 5tn (N >> M, JOBZ='N')
- * Compute singular values only
- * CWorkspace: need 0
- * RWorkspace: need M [e] + BDSPAC
- *
- CALL DBDSDC( 'L', 'N', M, S, RWORK( IE ), DUM,1,DUM,1,
- $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
- ELSE IF( WNTQO ) THEN
- IRVT = NRWORK
- IRU = IRVT + M*M
- NRWORK = IRU + M*M
- IVT = NWORK
- *
- * Path 5to (N >> M, JOBZ='O')
- * Copy A to U, generate Q
- * CWorkspace: need 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACPY( 'L', M, M, A, LDA, U, LDU )
- CALL ZUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Generate P**H in A
- * CWorkspace: need 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- LDWKVT = M
- IF( LWORK .GE. M*N + 3*M ) THEN
- *
- * WORK( IVT ) is M by N
- *
- NWORK = IVT + LDWKVT*N
- CHUNK = N
- ELSE
- *
- * WORK( IVT ) is M by CHUNK
- *
- CHUNK = ( LWORK - 3*M ) / M
- NWORK = IVT + LDWKVT*CHUNK
- END IF
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC
- *
- CALL DBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
- $ M, RWORK( IRVT ), M, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Multiply Q in U by real matrix RWORK(IRVT)
- * storing the result in WORK(IVT), copying to U
- * CWorkspace: need 2*M [tauq, taup] + M*M [VT]
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + 2*M*M [rwork]
- *
- CALL ZLACRM( M, M, U, LDU, RWORK( IRU ), M, WORK( IVT ),
- $ LDWKVT, RWORK( NRWORK ) )
- CALL ZLACPY( 'F', M, M, WORK( IVT ), LDWKVT, U, LDU )
- *
- * Multiply RWORK(IRVT) by P**H in A, storing the
- * result in WORK(IVT), copying to A
- * CWorkspace: need 2*M [tauq, taup] + M*M [VT]
- * CWorkspace: prefer 2*M [tauq, taup] + M*N [VT]
- * RWorkspace: need M [e] + M*M [RVT] + 2*M*M [rwork]
- * RWorkspace: prefer M [e] + M*M [RVT] + 2*M*N [rwork] < M + 5*M*M since N < 2*M here
- *
- NRWORK = IRU
- DO 50 I = 1, N, CHUNK
- BLK = MIN( N-I+1, CHUNK )
- CALL ZLARCM( M, BLK, RWORK( IRVT ), M, A( 1, I ), LDA,
- $ WORK( IVT ), LDWKVT, RWORK( NRWORK ) )
- CALL ZLACPY( 'F', M, BLK, WORK( IVT ), LDWKVT,
- $ A( 1, I ), LDA )
- 50 CONTINUE
- ELSE IF( WNTQS ) THEN
- *
- * Path 5ts (N >> M, JOBZ='S')
- * Copy A to U, generate Q
- * CWorkspace: need 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACPY( 'L', M, M, A, LDA, U, LDU )
- CALL ZUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Copy A to VT, generate P**H
- * CWorkspace: need 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
- CALL ZUNGBR( 'P', M, N, M, VT, LDVT, WORK( ITAUP ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC
- *
- IRVT = NRWORK
- IRU = IRVT + M*M
- NRWORK = IRU + M*M
- CALL DBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
- $ M, RWORK( IRVT ), M, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Multiply Q in U by real matrix RWORK(IRU), storing the
- * result in A, copying to U
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + 2*M*M [rwork]
- *
- CALL ZLACRM( M, M, U, LDU, RWORK( IRU ), M, A, LDA,
- $ RWORK( NRWORK ) )
- CALL ZLACPY( 'F', M, M, A, LDA, U, LDU )
- *
- * Multiply real matrix RWORK(IRVT) by P**H in VT,
- * storing the result in A, copying to VT
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + 2*M*N [rwork] < M + 5*M*M since N < 2*M here
- *
- NRWORK = IRU
- CALL ZLARCM( M, N, RWORK( IRVT ), M, VT, LDVT, A, LDA,
- $ RWORK( NRWORK ) )
- CALL ZLACPY( 'F', M, N, A, LDA, VT, LDVT )
- ELSE
- *
- * Path 5ta (N >> M, JOBZ='A')
- * Copy A to U, generate Q
- * CWorkspace: need 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACPY( 'L', M, M, A, LDA, U, LDU )
- CALL ZUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Copy A to VT, generate P**H
- * CWorkspace: need 2*M [tauq, taup] + N [work]
- * CWorkspace: prefer 2*M [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
- CALL ZUNGBR( 'P', N, N, M, VT, LDVT, WORK( ITAUP ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC
- *
- IRVT = NRWORK
- IRU = IRVT + M*M
- NRWORK = IRU + M*M
- CALL DBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
- $ M, RWORK( IRVT ), M, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Multiply Q in U by real matrix RWORK(IRU), storing the
- * result in A, copying to U
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + 2*M*M [rwork]
- *
- CALL ZLACRM( M, M, U, LDU, RWORK( IRU ), M, A, LDA,
- $ RWORK( NRWORK ) )
- CALL ZLACPY( 'F', M, M, A, LDA, U, LDU )
- *
- * Multiply real matrix RWORK(IRVT) by P**H in VT,
- * storing the result in A, copying to VT
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + 2*M*N [rwork] < M + 5*M*M since N < 2*M here
- *
- NRWORK = IRU
- CALL ZLARCM( M, N, RWORK( IRVT ), M, VT, LDVT, A, LDA,
- $ RWORK( NRWORK ) )
- CALL ZLACPY( 'F', M, N, A, LDA, VT, LDVT )
- END IF
- *
- ELSE
- *
- * N .LT. MNTHR2
- *
- * Path 6t (N > M, but not much larger)
- * Reduce to bidiagonal form without LQ decomposition
- * Use ZUNMBR to compute singular vectors
- *
- IE = 1
- NRWORK = IE + M
- ITAUQ = 1
- ITAUP = ITAUQ + M
- NWORK = ITAUP + M
- *
- * Bidiagonalize A
- * CWorkspace: need 2*M [tauq, taup] + N [work]
- * CWorkspace: prefer 2*M [tauq, taup] + (M+N)*NB [work]
- * RWorkspace: need M [e]
- *
- CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
- $ IERR )
- IF( WNTQN ) THEN
- *
- * Path 6tn (N > M, JOBZ='N')
- * Compute singular values only
- * CWorkspace: need 0
- * RWorkspace: need M [e] + BDSPAC
- *
- CALL DBDSDC( 'L', 'N', M, S, RWORK( IE ), DUM,1,DUM,1,
- $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
- ELSE IF( WNTQO ) THEN
- * Path 6to (N > M, JOBZ='O')
- LDWKVT = M
- IVT = NWORK
- IF( LWORK .GE. M*N + 3*M ) THEN
- *
- * WORK( IVT ) is M by N
- *
- CALL ZLASET( 'F', M, N, CZERO, CZERO, WORK( IVT ),
- $ LDWKVT )
- NWORK = IVT + LDWKVT*N
- ELSE
- *
- * WORK( IVT ) is M by CHUNK
- *
- CHUNK = ( LWORK - 3*M ) / M
- NWORK = IVT + LDWKVT*CHUNK
- END IF
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC
- *
- IRVT = NRWORK
- IRU = IRVT + M*M
- NRWORK = IRU + M*M
- CALL DBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
- $ M, RWORK( IRVT ), M, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix U
- * Overwrite U by left singular vectors of A
- * CWorkspace: need 2*M [tauq, taup] + M*M [VT] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*M [VT] + M*NB [work]
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU]
- *
- CALL ZLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
- CALL ZUNMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- IF( LWORK .GE. M*N + 3*M ) THEN
- *
- * Path 6to-fast
- * Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT)
- * Overwrite WORK(IVT) by right singular vectors of A,
- * copying to A
- * CWorkspace: need 2*M [tauq, taup] + M*N [VT] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*N [VT] + M*NB [work]
- * RWorkspace: need M [e] + M*M [RVT]
- *
- CALL ZLACP2( 'F', M, M, RWORK( IRVT ), M, WORK( IVT ),
- $ LDWKVT )
- CALL ZUNMBR( 'P', 'R', 'C', M, N, M, A, LDA,
- $ WORK( ITAUP ), WORK( IVT ), LDWKVT,
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- CALL ZLACPY( 'F', M, N, WORK( IVT ), LDWKVT, A, LDA )
- ELSE
- *
- * Path 6to-slow
- * Generate P**H in A
- * CWorkspace: need 2*M [tauq, taup] + M*M [VT] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*M [VT] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL ZUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Multiply Q in A by real matrix RWORK(IRU), storing the
- * result in WORK(IU), copying to A
- * CWorkspace: need 2*M [tauq, taup] + M*M [VT]
- * CWorkspace: prefer 2*M [tauq, taup] + M*N [VT]
- * RWorkspace: need M [e] + M*M [RVT] + 2*M*M [rwork]
- * RWorkspace: prefer M [e] + M*M [RVT] + 2*M*N [rwork] < M + 5*M*M since N < 2*M here
- *
- NRWORK = IRU
- DO 60 I = 1, N, CHUNK
- BLK = MIN( N-I+1, CHUNK )
- CALL ZLARCM( M, BLK, RWORK( IRVT ), M, A( 1, I ),
- $ LDA, WORK( IVT ), LDWKVT,
- $ RWORK( NRWORK ) )
- CALL ZLACPY( 'F', M, BLK, WORK( IVT ), LDWKVT,
- $ A( 1, I ), LDA )
- 60 CONTINUE
- END IF
- ELSE IF( WNTQS ) THEN
- *
- * Path 6ts (N > M, JOBZ='S')
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC
- *
- IRVT = NRWORK
- IRU = IRVT + M*M
- NRWORK = IRU + M*M
- CALL DBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
- $ M, RWORK( IRVT ), M, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix U
- * Overwrite U by left singular vectors of A
- * CWorkspace: need 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU]
- *
- CALL ZLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
- CALL ZUNMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix VT
- * Overwrite VT by right singular vectors of A
- * CWorkspace: need 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need M [e] + M*M [RVT]
- *
- CALL ZLASET( 'F', M, N, CZERO, CZERO, VT, LDVT )
- CALL ZLACP2( 'F', M, M, RWORK( IRVT ), M, VT, LDVT )
- CALL ZUNMBR( 'P', 'R', 'C', M, N, M, A, LDA,
- $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- ELSE
- *
- * Path 6ta (N > M, JOBZ='A')
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC
- *
- IRVT = NRWORK
- IRU = IRVT + M*M
- NRWORK = IRU + M*M
- *
- CALL DBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
- $ M, RWORK( IRVT ), M, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix U
- * Overwrite U by left singular vectors of A
- * CWorkspace: need 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU]
- *
- CALL ZLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
- CALL ZUNMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Set all of VT to identity matrix
- *
- CALL ZLASET( 'F', N, N, CZERO, CONE, VT, LDVT )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix VT
- * Overwrite VT by right singular vectors of A
- * CWorkspace: need 2*M [tauq, taup] + N [work]
- * CWorkspace: prefer 2*M [tauq, taup] + N*NB [work]
- * RWorkspace: need M [e] + M*M [RVT]
- *
- CALL ZLACP2( 'F', M, M, RWORK( IRVT ), M, VT, LDVT )
- CALL ZUNMBR( 'P', 'R', 'C', N, N, M, A, LDA,
- $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- END IF
- *
- END IF
- *
- END IF
- *
- * Undo scaling if necessary
- *
- IF( ISCL.EQ.1 ) THEN
- IF( ANRM.GT.BIGNUM )
- $ CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
- $ IERR )
- IF( INFO.NE.0 .AND. ANRM.GT.BIGNUM )
- $ CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN-1, 1,
- $ RWORK( IE ), MINMN, IERR )
- IF( ANRM.LT.SMLNUM )
- $ CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
- $ IERR )
- IF( INFO.NE.0 .AND. ANRM.LT.SMLNUM )
- $ CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN-1, 1,
- $ RWORK( IE ), MINMN, IERR )
- END IF
- *
- * Return optimal workspace in WORK(1)
- *
- WORK( 1 ) = MAXWRK
- *
- RETURN
- *
- * End of ZGESDD
- *
- END
|