|
- *> \brief <b> ZGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZGEES + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgees.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgees.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgees.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, W, VS,
- * LDVS, WORK, LWORK, RWORK, BWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBVS, SORT
- * INTEGER INFO, LDA, LDVS, LWORK, N, SDIM
- * ..
- * .. Array Arguments ..
- * LOGICAL BWORK( * )
- * DOUBLE PRECISION RWORK( * )
- * COMPLEX*16 A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
- * ..
- * .. Function Arguments ..
- * LOGICAL SELECT
- * EXTERNAL SELECT
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZGEES computes for an N-by-N complex nonsymmetric matrix A, the
- *> eigenvalues, the Schur form T, and, optionally, the matrix of Schur
- *> vectors Z. This gives the Schur factorization A = Z*T*(Z**H).
- *>
- *> Optionally, it also orders the eigenvalues on the diagonal of the
- *> Schur form so that selected eigenvalues are at the top left.
- *> The leading columns of Z then form an orthonormal basis for the
- *> invariant subspace corresponding to the selected eigenvalues.
- *>
- *> A complex matrix is in Schur form if it is upper triangular.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBVS
- *> \verbatim
- *> JOBVS is CHARACTER*1
- *> = 'N': Schur vectors are not computed;
- *> = 'V': Schur vectors are computed.
- *> \endverbatim
- *>
- *> \param[in] SORT
- *> \verbatim
- *> SORT is CHARACTER*1
- *> Specifies whether or not to order the eigenvalues on the
- *> diagonal of the Schur form.
- *> = 'N': Eigenvalues are not ordered:
- *> = 'S': Eigenvalues are ordered (see SELECT).
- *> \endverbatim
- *>
- *> \param[in] SELECT
- *> \verbatim
- *> SELECT is a LOGICAL FUNCTION of one COMPLEX*16 argument
- *> SELECT must be declared EXTERNAL in the calling subroutine.
- *> If SORT = 'S', SELECT is used to select eigenvalues to order
- *> to the top left of the Schur form.
- *> IF SORT = 'N', SELECT is not referenced.
- *> The eigenvalue W(j) is selected if SELECT(W(j)) is true.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the N-by-N matrix A.
- *> On exit, A has been overwritten by its Schur form T.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] SDIM
- *> \verbatim
- *> SDIM is INTEGER
- *> If SORT = 'N', SDIM = 0.
- *> If SORT = 'S', SDIM = number of eigenvalues for which
- *> SELECT is true.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is COMPLEX*16 array, dimension (N)
- *> W contains the computed eigenvalues, in the same order that
- *> they appear on the diagonal of the output Schur form T.
- *> \endverbatim
- *>
- *> \param[out] VS
- *> \verbatim
- *> VS is COMPLEX*16 array, dimension (LDVS,N)
- *> If JOBVS = 'V', VS contains the unitary matrix Z of Schur
- *> vectors.
- *> If JOBVS = 'N', VS is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDVS
- *> \verbatim
- *> LDVS is INTEGER
- *> The leading dimension of the array VS. LDVS >= 1; if
- *> JOBVS = 'V', LDVS >= N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,2*N).
- *> For good performance, LWORK must generally be larger.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] BWORK
- *> \verbatim
- *> BWORK is LOGICAL array, dimension (N)
- *> Not referenced if SORT = 'N'.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: if INFO = i, and i is
- *> <= N: the QR algorithm failed to compute all the
- *> eigenvalues; elements 1:ILO-1 and i+1:N of W
- *> contain those eigenvalues which have converged;
- *> if JOBVS = 'V', VS contains the matrix which
- *> reduces A to its partially converged Schur form.
- *> = N+1: the eigenvalues could not be reordered because
- *> some eigenvalues were too close to separate (the
- *> problem is very ill-conditioned);
- *> = N+2: after reordering, roundoff changed values of
- *> some complex eigenvalues so that leading
- *> eigenvalues in the Schur form no longer satisfy
- *> SELECT = .TRUE.. This could also be caused by
- *> underflow due to scaling.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16GEeigen
- *
- * =====================================================================
- SUBROUTINE ZGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, W, VS,
- $ LDVS, WORK, LWORK, RWORK, BWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER JOBVS, SORT
- INTEGER INFO, LDA, LDVS, LWORK, N, SDIM
- * ..
- * .. Array Arguments ..
- LOGICAL BWORK( * )
- DOUBLE PRECISION RWORK( * )
- COMPLEX*16 A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
- * ..
- * .. Function Arguments ..
- LOGICAL SELECT
- EXTERNAL SELECT
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, SCALEA, WANTST, WANTVS
- INTEGER HSWORK, I, IBAL, ICOND, IERR, IEVAL, IHI, ILO,
- $ ITAU, IWRK, MAXWRK, MINWRK
- DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
- * ..
- * .. Local Arrays ..
- DOUBLE PRECISION DUM( 1 )
- * ..
- * .. External Subroutines ..
- EXTERNAL DLABAD, XERBLA, ZCOPY, ZGEBAK, ZGEBAL, ZGEHRD,
- $ ZHSEQR, ZLACPY, ZLASCL, ZTRSEN, ZUNGHR
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- DOUBLE PRECISION DLAMCH, ZLANGE
- EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- WANTVS = LSAME( JOBVS, 'V' )
- WANTST = LSAME( SORT, 'S' )
- IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
- INFO = -10
- END IF
- *
- * Compute workspace
- * (Note: Comments in the code beginning "Workspace:" describe the
- * minimal amount of workspace needed at that point in the code,
- * as well as the preferred amount for good performance.
- * CWorkspace refers to complex workspace, and RWorkspace to real
- * workspace. NB refers to the optimal block size for the
- * immediately following subroutine, as returned by ILAENV.
- * HSWORK refers to the workspace preferred by ZHSEQR, as
- * calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
- * the worst case.)
- *
- IF( INFO.EQ.0 ) THEN
- IF( N.EQ.0 ) THEN
- MINWRK = 1
- MAXWRK = 1
- ELSE
- MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
- MINWRK = 2*N
- *
- CALL ZHSEQR( 'S', JOBVS, N, 1, N, A, LDA, W, VS, LDVS,
- $ WORK, -1, IEVAL )
- HSWORK = WORK( 1 )
- *
- IF( .NOT.WANTVS ) THEN
- MAXWRK = MAX( MAXWRK, HSWORK )
- ELSE
- MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
- $ ' ', N, 1, N, -1 ) )
- MAXWRK = MAX( MAXWRK, HSWORK )
- END IF
- END IF
- WORK( 1 ) = MAXWRK
- *
- IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
- INFO = -12
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZGEES ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 ) THEN
- SDIM = 0
- RETURN
- END IF
- *
- * Get machine constants
- *
- EPS = DLAMCH( 'P' )
- SMLNUM = DLAMCH( 'S' )
- BIGNUM = ONE / SMLNUM
- CALL DLABAD( SMLNUM, BIGNUM )
- SMLNUM = SQRT( SMLNUM ) / EPS
- BIGNUM = ONE / SMLNUM
- *
- * Scale A if max element outside range [SMLNUM,BIGNUM]
- *
- ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
- SCALEA = .FALSE.
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- SCALEA = .TRUE.
- CSCALE = SMLNUM
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- SCALEA = .TRUE.
- CSCALE = BIGNUM
- END IF
- IF( SCALEA )
- $ CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
- *
- * Permute the matrix to make it more nearly triangular
- * (CWorkspace: none)
- * (RWorkspace: need N)
- *
- IBAL = 1
- CALL ZGEBAL( 'P', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
- *
- * Reduce to upper Hessenberg form
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: none)
- *
- ITAU = 1
- IWRK = N + ITAU
- CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
- $ LWORK-IWRK+1, IERR )
- *
- IF( WANTVS ) THEN
- *
- * Copy Householder vectors to VS
- *
- CALL ZLACPY( 'L', N, N, A, LDA, VS, LDVS )
- *
- * Generate unitary matrix in VS
- * (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
- * (RWorkspace: none)
- *
- CALL ZUNGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
- $ LWORK-IWRK+1, IERR )
- END IF
- *
- SDIM = 0
- *
- * Perform QR iteration, accumulating Schur vectors in VS if desired
- * (CWorkspace: need 1, prefer HSWORK (see comments) )
- * (RWorkspace: none)
- *
- IWRK = ITAU
- CALL ZHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, W, VS, LDVS,
- $ WORK( IWRK ), LWORK-IWRK+1, IEVAL )
- IF( IEVAL.GT.0 )
- $ INFO = IEVAL
- *
- * Sort eigenvalues if desired
- *
- IF( WANTST .AND. INFO.EQ.0 ) THEN
- IF( SCALEA )
- $ CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, W, N, IERR )
- DO 10 I = 1, N
- BWORK( I ) = SELECT( W( I ) )
- 10 CONTINUE
- *
- * Reorder eigenvalues and transform Schur vectors
- * (CWorkspace: none)
- * (RWorkspace: none)
- *
- CALL ZTRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, W, SDIM,
- $ S, SEP, WORK( IWRK ), LWORK-IWRK+1, ICOND )
- END IF
- *
- IF( WANTVS ) THEN
- *
- * Undo balancing
- * (CWorkspace: none)
- * (RWorkspace: need N)
- *
- CALL ZGEBAK( 'P', 'R', N, ILO, IHI, RWORK( IBAL ), N, VS, LDVS,
- $ IERR )
- END IF
- *
- IF( SCALEA ) THEN
- *
- * Undo scaling for the Schur form of A
- *
- CALL ZLASCL( 'U', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
- CALL ZCOPY( N, A, LDA+1, W, 1 )
- END IF
- *
- WORK( 1 ) = MAXWRK
- RETURN
- *
- * End of ZGEES
- *
- END
|