|
- *> \brief \b ZGEBRD
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZGEBRD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgebrd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgebrd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgebrd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION D( * ), E( * )
- * COMPLEX*16 A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZGEBRD reduces a general complex M-by-N matrix A to upper or lower
- *> bidiagonal form B by a unitary transformation: Q**H * A * P = B.
- *>
- *> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows in the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns in the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the M-by-N general matrix to be reduced.
- *> On exit,
- *> if m >= n, the diagonal and the first superdiagonal are
- *> overwritten with the upper bidiagonal matrix B; the
- *> elements below the diagonal, with the array TAUQ, represent
- *> the unitary matrix Q as a product of elementary
- *> reflectors, and the elements above the first superdiagonal,
- *> with the array TAUP, represent the unitary matrix P as
- *> a product of elementary reflectors;
- *> if m < n, the diagonal and the first subdiagonal are
- *> overwritten with the lower bidiagonal matrix B; the
- *> elements below the first subdiagonal, with the array TAUQ,
- *> represent the unitary matrix Q as a product of
- *> elementary reflectors, and the elements above the diagonal,
- *> with the array TAUP, represent the unitary matrix P as
- *> a product of elementary reflectors.
- *> See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (min(M,N))
- *> The diagonal elements of the bidiagonal matrix B:
- *> D(i) = A(i,i).
- *> \endverbatim
- *>
- *> \param[out] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (min(M,N)-1)
- *> The off-diagonal elements of the bidiagonal matrix B:
- *> if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
- *> if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
- *> \endverbatim
- *>
- *> \param[out] TAUQ
- *> \verbatim
- *> TAUQ is COMPLEX*16 array, dimension (min(M,N))
- *> The scalar factors of the elementary reflectors which
- *> represent the unitary matrix Q. See Further Details.
- *> \endverbatim
- *>
- *> \param[out] TAUP
- *> \verbatim
- *> TAUP is COMPLEX*16 array, dimension (min(M,N))
- *> The scalar factors of the elementary reflectors which
- *> represent the unitary matrix P. See Further Details.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The length of the array WORK. LWORK >= max(1,M,N).
- *> For optimum performance LWORK >= (M+N)*NB, where NB
- *> is the optimal blocksize.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2017
- *
- *> \ingroup complex16GEcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The matrices Q and P are represented as products of elementary
- *> reflectors:
- *>
- *> If m >= n,
- *>
- *> Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
- *>
- *> Each H(i) and G(i) has the form:
- *>
- *> H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H
- *>
- *> where tauq and taup are complex scalars, and v and u are complex
- *> vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
- *> A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
- *> A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
- *>
- *> If m < n,
- *>
- *> Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
- *>
- *> Each H(i) and G(i) has the form:
- *>
- *> H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H
- *>
- *> where tauq and taup are complex scalars, and v and u are complex
- *> vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in
- *> A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in
- *> A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
- *>
- *> The contents of A on exit are illustrated by the following examples:
- *>
- *> m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
- *>
- *> ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
- *> ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
- *> ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
- *> ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
- *> ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
- *> ( v1 v2 v3 v4 v5 )
- *>
- *> where d and e denote diagonal and off-diagonal elements of B, vi
- *> denotes an element of the vector defining H(i), and ui an element of
- *> the vector defining G(i).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE ZGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
- $ INFO )
- *
- * -- LAPACK computational routine (version 3.8.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2017
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION D( * ), E( * )
- COMPLEX*16 A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ONE
- PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER I, IINFO, J, LDWRKX, LDWRKY, LWKOPT, MINMN, NB,
- $ NBMIN, NX, WS
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZGEBD2, ZGEMM, ZLABRD
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, MAX, MIN
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- EXTERNAL ILAENV
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters
- *
- INFO = 0
- NB = MAX( 1, ILAENV( 1, 'ZGEBRD', ' ', M, N, -1, -1 ) )
- LWKOPT = ( M+N )*NB
- WORK( 1 ) = DBLE( LWKOPT )
- LQUERY = ( LWORK.EQ.-1 )
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- ELSE IF( LWORK.LT.MAX( 1, M, N ) .AND. .NOT.LQUERY ) THEN
- INFO = -10
- END IF
- IF( INFO.LT.0 ) THEN
- CALL XERBLA( 'ZGEBRD', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- MINMN = MIN( M, N )
- IF( MINMN.EQ.0 ) THEN
- WORK( 1 ) = 1
- RETURN
- END IF
- *
- WS = MAX( M, N )
- LDWRKX = M
- LDWRKY = N
- *
- IF( NB.GT.1 .AND. NB.LT.MINMN ) THEN
- *
- * Set the crossover point NX.
- *
- NX = MAX( NB, ILAENV( 3, 'ZGEBRD', ' ', M, N, -1, -1 ) )
- *
- * Determine when to switch from blocked to unblocked code.
- *
- IF( NX.LT.MINMN ) THEN
- WS = ( M+N )*NB
- IF( LWORK.LT.WS ) THEN
- *
- * Not enough work space for the optimal NB, consider using
- * a smaller block size.
- *
- NBMIN = ILAENV( 2, 'ZGEBRD', ' ', M, N, -1, -1 )
- IF( LWORK.GE.( M+N )*NBMIN ) THEN
- NB = LWORK / ( M+N )
- ELSE
- NB = 1
- NX = MINMN
- END IF
- END IF
- END IF
- ELSE
- NX = MINMN
- END IF
- *
- DO 30 I = 1, MINMN - NX, NB
- *
- * Reduce rows and columns i:i+ib-1 to bidiagonal form and return
- * the matrices X and Y which are needed to update the unreduced
- * part of the matrix
- *
- CALL ZLABRD( M-I+1, N-I+1, NB, A( I, I ), LDA, D( I ), E( I ),
- $ TAUQ( I ), TAUP( I ), WORK, LDWRKX,
- $ WORK( LDWRKX*NB+1 ), LDWRKY )
- *
- * Update the trailing submatrix A(i+ib:m,i+ib:n), using
- * an update of the form A := A - V*Y**H - X*U**H
- *
- CALL ZGEMM( 'No transpose', 'Conjugate transpose', M-I-NB+1,
- $ N-I-NB+1, NB, -ONE, A( I+NB, I ), LDA,
- $ WORK( LDWRKX*NB+NB+1 ), LDWRKY, ONE,
- $ A( I+NB, I+NB ), LDA )
- CALL ZGEMM( 'No transpose', 'No transpose', M-I-NB+1, N-I-NB+1,
- $ NB, -ONE, WORK( NB+1 ), LDWRKX, A( I, I+NB ), LDA,
- $ ONE, A( I+NB, I+NB ), LDA )
- *
- * Copy diagonal and off-diagonal elements of B back into A
- *
- IF( M.GE.N ) THEN
- DO 10 J = I, I + NB - 1
- A( J, J ) = D( J )
- A( J, J+1 ) = E( J )
- 10 CONTINUE
- ELSE
- DO 20 J = I, I + NB - 1
- A( J, J ) = D( J )
- A( J+1, J ) = E( J )
- 20 CONTINUE
- END IF
- 30 CONTINUE
- *
- * Use unblocked code to reduce the remainder of the matrix
- *
- CALL ZGEBD2( M-I+1, N-I+1, A( I, I ), LDA, D( I ), E( I ),
- $ TAUQ( I ), TAUP( I ), WORK, IINFO )
- WORK( 1 ) = WS
- RETURN
- *
- * End of ZGEBRD
- *
- END
|