|
- *> \brief \b STPRFB applies a real or complex "triangular-pentagonal" blocked reflector to a real or complex matrix, which is composed of two blocks.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download STPRFB + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stprfb.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stprfb.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stprfb.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE STPRFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L,
- * V, LDV, T, LDT, A, LDA, B, LDB, WORK, LDWORK )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIRECT, SIDE, STOREV, TRANS
- * INTEGER K, L, LDA, LDB, LDT, LDV, LDWORK, M, N
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), B( LDB, * ), T( LDT, * ),
- * $ V( LDV, * ), WORK( LDWORK, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> STPRFB applies a real "triangular-pentagonal" block reflector H or its
- *> conjugate transpose H^H to a real matrix C, which is composed of two
- *> blocks A and B, either from the left or right.
- *>
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> = 'L': apply H or H^H from the Left
- *> = 'R': apply H or H^H from the Right
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> = 'N': apply H (No transpose)
- *> = 'C': apply H^H (Conjugate transpose)
- *> \endverbatim
- *>
- *> \param[in] DIRECT
- *> \verbatim
- *> DIRECT is CHARACTER*1
- *> Indicates how H is formed from a product of elementary
- *> reflectors
- *> = 'F': H = H(1) H(2) . . . H(k) (Forward)
- *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
- *> \endverbatim
- *>
- *> \param[in] STOREV
- *> \verbatim
- *> STOREV is CHARACTER*1
- *> Indicates how the vectors which define the elementary
- *> reflectors are stored:
- *> = 'C': Columns
- *> = 'R': Rows
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix B.
- *> M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix B.
- *> N >= 0.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The order of the matrix T, i.e. the number of elementary
- *> reflectors whose product defines the block reflector.
- *> K >= 0.
- *> \endverbatim
- *>
- *> \param[in] L
- *> \verbatim
- *> L is INTEGER
- *> The order of the trapezoidal part of V.
- *> K >= L >= 0. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] V
- *> \verbatim
- *> V is REAL array, dimension
- *> (LDV,K) if STOREV = 'C'
- *> (LDV,M) if STOREV = 'R' and SIDE = 'L'
- *> (LDV,N) if STOREV = 'R' and SIDE = 'R'
- *> The pentagonal matrix V, which contains the elementary reflectors
- *> H(1), H(2), ..., H(K). See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDV
- *> \verbatim
- *> LDV is INTEGER
- *> The leading dimension of the array V.
- *> If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
- *> if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
- *> if STOREV = 'R', LDV >= K.
- *> \endverbatim
- *>
- *> \param[in] T
- *> \verbatim
- *> T is REAL array, dimension (LDT,K)
- *> The triangular K-by-K matrix T in the representation of the
- *> block reflector.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the array T.
- *> LDT >= K.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension
- *> (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R'
- *> On entry, the K-by-N or M-by-K matrix A.
- *> On exit, A is overwritten by the corresponding block of
- *> H*C or H^H*C or C*H or C*H^H. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A.
- *> If SIDE = 'L', LDA >= max(1,K);
- *> If SIDE = 'R', LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,N)
- *> On entry, the M-by-N matrix B.
- *> On exit, B is overwritten by the corresponding block of
- *> H*C or H^H*C or C*H or C*H^H. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B.
- *> LDB >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension
- *> (LDWORK,N) if SIDE = 'L',
- *> (LDWORK,K) if SIDE = 'R'.
- *> \endverbatim
- *>
- *> \param[in] LDWORK
- *> \verbatim
- *> LDWORK is INTEGER
- *> The leading dimension of the array WORK.
- *> If SIDE = 'L', LDWORK >= K;
- *> if SIDE = 'R', LDWORK >= M.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup realOTHERauxiliary
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The matrix C is a composite matrix formed from blocks A and B.
- *> The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K,
- *> and if SIDE = 'L', A is of size K-by-N.
- *>
- *> If SIDE = 'R' and DIRECT = 'F', C = [A B].
- *>
- *> If SIDE = 'L' and DIRECT = 'F', C = [A]
- *> [B].
- *>
- *> If SIDE = 'R' and DIRECT = 'B', C = [B A].
- *>
- *> If SIDE = 'L' and DIRECT = 'B', C = [B]
- *> [A].
- *>
- *> The pentagonal matrix V is composed of a rectangular block V1 and a
- *> trapezoidal block V2. The size of the trapezoidal block is determined by
- *> the parameter L, where 0<=L<=K. If L=K, the V2 block of V is triangular;
- *> if L=0, there is no trapezoidal block, thus V = V1 is rectangular.
- *>
- *> If DIRECT = 'F' and STOREV = 'C': V = [V1]
- *> [V2]
- *> - V2 is upper trapezoidal (first L rows of K-by-K upper triangular)
- *>
- *> If DIRECT = 'F' and STOREV = 'R': V = [V1 V2]
- *>
- *> - V2 is lower trapezoidal (first L columns of K-by-K lower triangular)
- *>
- *> If DIRECT = 'B' and STOREV = 'C': V = [V2]
- *> [V1]
- *> - V2 is lower trapezoidal (last L rows of K-by-K lower triangular)
- *>
- *> If DIRECT = 'B' and STOREV = 'R': V = [V2 V1]
- *>
- *> - V2 is upper trapezoidal (last L columns of K-by-K upper triangular)
- *>
- *> If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K.
- *>
- *> If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K.
- *>
- *> If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L.
- *>
- *> If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE STPRFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L,
- $ V, LDV, T, LDT, A, LDA, B, LDB, WORK, LDWORK )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER DIRECT, SIDE, STOREV, TRANS
- INTEGER K, L, LDA, LDB, LDT, LDV, LDWORK, M, N
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), B( LDB, * ), T( LDT, * ),
- $ V( LDV, * ), WORK( LDWORK, * )
- * ..
- *
- * ==========================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0, ZERO = 0.0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J, MP, NP, KP
- LOGICAL LEFT, FORWARD, COLUMN, RIGHT, BACKWARD, ROW
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMM, STRMM
- * ..
- * .. Executable Statements ..
- *
- * Quick return if possible
- *
- IF( M.LE.0 .OR. N.LE.0 .OR. K.LE.0 .OR. L.LT.0 ) RETURN
- *
- IF( LSAME( STOREV, 'C' ) ) THEN
- COLUMN = .TRUE.
- ROW = .FALSE.
- ELSE IF ( LSAME( STOREV, 'R' ) ) THEN
- COLUMN = .FALSE.
- ROW = .TRUE.
- ELSE
- COLUMN = .FALSE.
- ROW = .FALSE.
- END IF
- *
- IF( LSAME( SIDE, 'L' ) ) THEN
- LEFT = .TRUE.
- RIGHT = .FALSE.
- ELSE IF( LSAME( SIDE, 'R' ) ) THEN
- LEFT = .FALSE.
- RIGHT = .TRUE.
- ELSE
- LEFT = .FALSE.
- RIGHT = .FALSE.
- END IF
- *
- IF( LSAME( DIRECT, 'F' ) ) THEN
- FORWARD = .TRUE.
- BACKWARD = .FALSE.
- ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
- FORWARD = .FALSE.
- BACKWARD = .TRUE.
- ELSE
- FORWARD = .FALSE.
- BACKWARD = .FALSE.
- END IF
- *
- * ---------------------------------------------------------------------------
- *
- IF( COLUMN .AND. FORWARD .AND. LEFT ) THEN
- *
- * ---------------------------------------------------------------------------
- *
- * Let W = [ I ] (K-by-K)
- * [ V ] (M-by-K)
- *
- * Form H C or H^H C where C = [ A ] (K-by-N)
- * [ B ] (M-by-N)
- *
- * H = I - W T W^H or H^H = I - W T^H W^H
- *
- * A = A - T (A + V^H B) or A = A - T^H (A + V^H B)
- * B = B - V T (A + V^H B) or B = B - V T^H (A + V^H B)
- *
- * ---------------------------------------------------------------------------
- *
- MP = MIN( M-L+1, M )
- KP = MIN( L+1, K )
- *
- DO J = 1, N
- DO I = 1, L
- WORK( I, J ) = B( M-L+I, J )
- END DO
- END DO
- CALL STRMM( 'L', 'U', 'T', 'N', L, N, ONE, V( MP, 1 ), LDV,
- $ WORK, LDWORK )
- CALL SGEMM( 'T', 'N', L, N, M-L, ONE, V, LDV, B, LDB,
- $ ONE, WORK, LDWORK )
- CALL SGEMM( 'T', 'N', K-L, N, M, ONE, V( 1, KP ), LDV,
- $ B, LDB, ZERO, WORK( KP, 1 ), LDWORK )
- *
- DO J = 1, N
- DO I = 1, K
- WORK( I, J ) = WORK( I, J ) + A( I, J )
- END DO
- END DO
- *
- CALL STRMM( 'L', 'U', TRANS, 'N', K, N, ONE, T, LDT,
- $ WORK, LDWORK )
- *
- DO J = 1, N
- DO I = 1, K
- A( I, J ) = A( I, J ) - WORK( I, J )
- END DO
- END DO
- *
- CALL SGEMM( 'N', 'N', M-L, N, K, -ONE, V, LDV, WORK, LDWORK,
- $ ONE, B, LDB )
- CALL SGEMM( 'N', 'N', L, N, K-L, -ONE, V( MP, KP ), LDV,
- $ WORK( KP, 1 ), LDWORK, ONE, B( MP, 1 ), LDB )
- CALL STRMM( 'L', 'U', 'N', 'N', L, N, ONE, V( MP, 1 ), LDV,
- $ WORK, LDWORK )
- DO J = 1, N
- DO I = 1, L
- B( M-L+I, J ) = B( M-L+I, J ) - WORK( I, J )
- END DO
- END DO
- *
- * ---------------------------------------------------------------------------
- *
- ELSE IF( COLUMN .AND. FORWARD .AND. RIGHT ) THEN
- *
- * ---------------------------------------------------------------------------
- *
- * Let W = [ I ] (K-by-K)
- * [ V ] (N-by-K)
- *
- * Form C H or C H^H where C = [ A B ] (A is M-by-K, B is M-by-N)
- *
- * H = I - W T W^H or H^H = I - W T^H W^H
- *
- * A = A - (A + B V) T or A = A - (A + B V) T^H
- * B = B - (A + B V) T V^H or B = B - (A + B V) T^H V^H
- *
- * ---------------------------------------------------------------------------
- *
- NP = MIN( N-L+1, N )
- KP = MIN( L+1, K )
- *
- DO J = 1, L
- DO I = 1, M
- WORK( I, J ) = B( I, N-L+J )
- END DO
- END DO
- CALL STRMM( 'R', 'U', 'N', 'N', M, L, ONE, V( NP, 1 ), LDV,
- $ WORK, LDWORK )
- CALL SGEMM( 'N', 'N', M, L, N-L, ONE, B, LDB,
- $ V, LDV, ONE, WORK, LDWORK )
- CALL SGEMM( 'N', 'N', M, K-L, N, ONE, B, LDB,
- $ V( 1, KP ), LDV, ZERO, WORK( 1, KP ), LDWORK )
- *
- DO J = 1, K
- DO I = 1, M
- WORK( I, J ) = WORK( I, J ) + A( I, J )
- END DO
- END DO
- *
- CALL STRMM( 'R', 'U', TRANS, 'N', M, K, ONE, T, LDT,
- $ WORK, LDWORK )
- *
- DO J = 1, K
- DO I = 1, M
- A( I, J ) = A( I, J ) - WORK( I, J )
- END DO
- END DO
- *
- CALL SGEMM( 'N', 'T', M, N-L, K, -ONE, WORK, LDWORK,
- $ V, LDV, ONE, B, LDB )
- CALL SGEMM( 'N', 'T', M, L, K-L, -ONE, WORK( 1, KP ), LDWORK,
- $ V( NP, KP ), LDV, ONE, B( 1, NP ), LDB )
- CALL STRMM( 'R', 'U', 'T', 'N', M, L, ONE, V( NP, 1 ), LDV,
- $ WORK, LDWORK )
- DO J = 1, L
- DO I = 1, M
- B( I, N-L+J ) = B( I, N-L+J ) - WORK( I, J )
- END DO
- END DO
- *
- * ---------------------------------------------------------------------------
- *
- ELSE IF( COLUMN .AND. BACKWARD .AND. LEFT ) THEN
- *
- * ---------------------------------------------------------------------------
- *
- * Let W = [ V ] (M-by-K)
- * [ I ] (K-by-K)
- *
- * Form H C or H^H C where C = [ B ] (M-by-N)
- * [ A ] (K-by-N)
- *
- * H = I - W T W^H or H^H = I - W T^H W^H
- *
- * A = A - T (A + V^H B) or A = A - T^H (A + V^H B)
- * B = B - V T (A + V^H B) or B = B - V T^H (A + V^H B)
- *
- * ---------------------------------------------------------------------------
- *
- MP = MIN( L+1, M )
- KP = MIN( K-L+1, K )
- *
- DO J = 1, N
- DO I = 1, L
- WORK( K-L+I, J ) = B( I, J )
- END DO
- END DO
- *
- CALL STRMM( 'L', 'L', 'T', 'N', L, N, ONE, V( 1, KP ), LDV,
- $ WORK( KP, 1 ), LDWORK )
- CALL SGEMM( 'T', 'N', L, N, M-L, ONE, V( MP, KP ), LDV,
- $ B( MP, 1 ), LDB, ONE, WORK( KP, 1 ), LDWORK )
- CALL SGEMM( 'T', 'N', K-L, N, M, ONE, V, LDV,
- $ B, LDB, ZERO, WORK, LDWORK )
- *
- DO J = 1, N
- DO I = 1, K
- WORK( I, J ) = WORK( I, J ) + A( I, J )
- END DO
- END DO
- *
- CALL STRMM( 'L', 'L', TRANS, 'N', K, N, ONE, T, LDT,
- $ WORK, LDWORK )
- *
- DO J = 1, N
- DO I = 1, K
- A( I, J ) = A( I, J ) - WORK( I, J )
- END DO
- END DO
- *
- CALL SGEMM( 'N', 'N', M-L, N, K, -ONE, V( MP, 1 ), LDV,
- $ WORK, LDWORK, ONE, B( MP, 1 ), LDB )
- CALL SGEMM( 'N', 'N', L, N, K-L, -ONE, V, LDV,
- $ WORK, LDWORK, ONE, B, LDB )
- CALL STRMM( 'L', 'L', 'N', 'N', L, N, ONE, V( 1, KP ), LDV,
- $ WORK( KP, 1 ), LDWORK )
- DO J = 1, N
- DO I = 1, L
- B( I, J ) = B( I, J ) - WORK( K-L+I, J )
- END DO
- END DO
- *
- * ---------------------------------------------------------------------------
- *
- ELSE IF( COLUMN .AND. BACKWARD .AND. RIGHT ) THEN
- *
- * ---------------------------------------------------------------------------
- *
- * Let W = [ V ] (N-by-K)
- * [ I ] (K-by-K)
- *
- * Form C H or C H^H where C = [ B A ] (B is M-by-N, A is M-by-K)
- *
- * H = I - W T W^H or H^H = I - W T^H W^H
- *
- * A = A - (A + B V) T or A = A - (A + B V) T^H
- * B = B - (A + B V) T V^H or B = B - (A + B V) T^H V^H
- *
- * ---------------------------------------------------------------------------
- *
- NP = MIN( L+1, N )
- KP = MIN( K-L+1, K )
- *
- DO J = 1, L
- DO I = 1, M
- WORK( I, K-L+J ) = B( I, J )
- END DO
- END DO
- CALL STRMM( 'R', 'L', 'N', 'N', M, L, ONE, V( 1, KP ), LDV,
- $ WORK( 1, KP ), LDWORK )
- CALL SGEMM( 'N', 'N', M, L, N-L, ONE, B( 1, NP ), LDB,
- $ V( NP, KP ), LDV, ONE, WORK( 1, KP ), LDWORK )
- CALL SGEMM( 'N', 'N', M, K-L, N, ONE, B, LDB,
- $ V, LDV, ZERO, WORK, LDWORK )
- *
- DO J = 1, K
- DO I = 1, M
- WORK( I, J ) = WORK( I, J ) + A( I, J )
- END DO
- END DO
- *
- CALL STRMM( 'R', 'L', TRANS, 'N', M, K, ONE, T, LDT,
- $ WORK, LDWORK )
- *
- DO J = 1, K
- DO I = 1, M
- A( I, J ) = A( I, J ) - WORK( I, J )
- END DO
- END DO
- *
- CALL SGEMM( 'N', 'T', M, N-L, K, -ONE, WORK, LDWORK,
- $ V( NP, 1 ), LDV, ONE, B( 1, NP ), LDB )
- CALL SGEMM( 'N', 'T', M, L, K-L, -ONE, WORK, LDWORK,
- $ V, LDV, ONE, B, LDB )
- CALL STRMM( 'R', 'L', 'T', 'N', M, L, ONE, V( 1, KP ), LDV,
- $ WORK( 1, KP ), LDWORK )
- DO J = 1, L
- DO I = 1, M
- B( I, J ) = B( I, J ) - WORK( I, K-L+J )
- END DO
- END DO
- *
- * ---------------------------------------------------------------------------
- *
- ELSE IF( ROW .AND. FORWARD .AND. LEFT ) THEN
- *
- * ---------------------------------------------------------------------------
- *
- * Let W = [ I V ] ( I is K-by-K, V is K-by-M )
- *
- * Form H C or H^H C where C = [ A ] (K-by-N)
- * [ B ] (M-by-N)
- *
- * H = I - W^H T W or H^H = I - W^H T^H W
- *
- * A = A - T (A + V B) or A = A - T^H (A + V B)
- * B = B - V^H T (A + V B) or B = B - V^H T^H (A + V B)
- *
- * ---------------------------------------------------------------------------
- *
- MP = MIN( M-L+1, M )
- KP = MIN( L+1, K )
- *
- DO J = 1, N
- DO I = 1, L
- WORK( I, J ) = B( M-L+I, J )
- END DO
- END DO
- CALL STRMM( 'L', 'L', 'N', 'N', L, N, ONE, V( 1, MP ), LDV,
- $ WORK, LDB )
- CALL SGEMM( 'N', 'N', L, N, M-L, ONE, V, LDV,B, LDB,
- $ ONE, WORK, LDWORK )
- CALL SGEMM( 'N', 'N', K-L, N, M, ONE, V( KP, 1 ), LDV,
- $ B, LDB, ZERO, WORK( KP, 1 ), LDWORK )
- *
- DO J = 1, N
- DO I = 1, K
- WORK( I, J ) = WORK( I, J ) + A( I, J )
- END DO
- END DO
- *
- CALL STRMM( 'L', 'U', TRANS, 'N', K, N, ONE, T, LDT,
- $ WORK, LDWORK )
- *
- DO J = 1, N
- DO I = 1, K
- A( I, J ) = A( I, J ) - WORK( I, J )
- END DO
- END DO
- *
- CALL SGEMM( 'T', 'N', M-L, N, K, -ONE, V, LDV, WORK, LDWORK,
- $ ONE, B, LDB )
- CALL SGEMM( 'T', 'N', L, N, K-L, -ONE, V( KP, MP ), LDV,
- $ WORK( KP, 1 ), LDWORK, ONE, B( MP, 1 ), LDB )
- CALL STRMM( 'L', 'L', 'T', 'N', L, N, ONE, V( 1, MP ), LDV,
- $ WORK, LDWORK )
- DO J = 1, N
- DO I = 1, L
- B( M-L+I, J ) = B( M-L+I, J ) - WORK( I, J )
- END DO
- END DO
- *
- * ---------------------------------------------------------------------------
- *
- ELSE IF( ROW .AND. FORWARD .AND. RIGHT ) THEN
- *
- * ---------------------------------------------------------------------------
- *
- * Let W = [ I V ] ( I is K-by-K, V is K-by-N )
- *
- * Form C H or C H^H where C = [ A B ] (A is M-by-K, B is M-by-N)
- *
- * H = I - W^H T W or H^H = I - W^H T^H W
- *
- * A = A - (A + B V^H) T or A = A - (A + B V^H) T^H
- * B = B - (A + B V^H) T V or B = B - (A + B V^H) T^H V
- *
- * ---------------------------------------------------------------------------
- *
- NP = MIN( N-L+1, N )
- KP = MIN( L+1, K )
- *
- DO J = 1, L
- DO I = 1, M
- WORK( I, J ) = B( I, N-L+J )
- END DO
- END DO
- CALL STRMM( 'R', 'L', 'T', 'N', M, L, ONE, V( 1, NP ), LDV,
- $ WORK, LDWORK )
- CALL SGEMM( 'N', 'T', M, L, N-L, ONE, B, LDB, V, LDV,
- $ ONE, WORK, LDWORK )
- CALL SGEMM( 'N', 'T', M, K-L, N, ONE, B, LDB,
- $ V( KP, 1 ), LDV, ZERO, WORK( 1, KP ), LDWORK )
- *
- DO J = 1, K
- DO I = 1, M
- WORK( I, J ) = WORK( I, J ) + A( I, J )
- END DO
- END DO
- *
- CALL STRMM( 'R', 'U', TRANS, 'N', M, K, ONE, T, LDT,
- $ WORK, LDWORK )
- *
- DO J = 1, K
- DO I = 1, M
- A( I, J ) = A( I, J ) - WORK( I, J )
- END DO
- END DO
- *
- CALL SGEMM( 'N', 'N', M, N-L, K, -ONE, WORK, LDWORK,
- $ V, LDV, ONE, B, LDB )
- CALL SGEMM( 'N', 'N', M, L, K-L, -ONE, WORK( 1, KP ), LDWORK,
- $ V( KP, NP ), LDV, ONE, B( 1, NP ), LDB )
- CALL STRMM( 'R', 'L', 'N', 'N', M, L, ONE, V( 1, NP ), LDV,
- $ WORK, LDWORK )
- DO J = 1, L
- DO I = 1, M
- B( I, N-L+J ) = B( I, N-L+J ) - WORK( I, J )
- END DO
- END DO
- *
- * ---------------------------------------------------------------------------
- *
- ELSE IF( ROW .AND. BACKWARD .AND. LEFT ) THEN
- *
- * ---------------------------------------------------------------------------
- *
- * Let W = [ V I ] ( I is K-by-K, V is K-by-M )
- *
- * Form H C or H^H C where C = [ B ] (M-by-N)
- * [ A ] (K-by-N)
- *
- * H = I - W^H T W or H^H = I - W^H T^H W
- *
- * A = A - T (A + V B) or A = A - T^H (A + V B)
- * B = B - V^H T (A + V B) or B = B - V^H T^H (A + V B)
- *
- * ---------------------------------------------------------------------------
- *
- MP = MIN( L+1, M )
- KP = MIN( K-L+1, K )
- *
- DO J = 1, N
- DO I = 1, L
- WORK( K-L+I, J ) = B( I, J )
- END DO
- END DO
- CALL STRMM( 'L', 'U', 'N', 'N', L, N, ONE, V( KP, 1 ), LDV,
- $ WORK( KP, 1 ), LDWORK )
- CALL SGEMM( 'N', 'N', L, N, M-L, ONE, V( KP, MP ), LDV,
- $ B( MP, 1 ), LDB, ONE, WORK( KP, 1 ), LDWORK )
- CALL SGEMM( 'N', 'N', K-L, N, M, ONE, V, LDV, B, LDB,
- $ ZERO, WORK, LDWORK )
- *
- DO J = 1, N
- DO I = 1, K
- WORK( I, J ) = WORK( I, J ) + A( I, J )
- END DO
- END DO
- *
- CALL STRMM( 'L', 'L ', TRANS, 'N', K, N, ONE, T, LDT,
- $ WORK, LDWORK )
- *
- DO J = 1, N
- DO I = 1, K
- A( I, J ) = A( I, J ) - WORK( I, J )
- END DO
- END DO
- *
- CALL SGEMM( 'T', 'N', M-L, N, K, -ONE, V( 1, MP ), LDV,
- $ WORK, LDWORK, ONE, B( MP, 1 ), LDB )
- CALL SGEMM( 'T', 'N', L, N, K-L, -ONE, V, LDV,
- $ WORK, LDWORK, ONE, B, LDB )
- CALL STRMM( 'L', 'U', 'T', 'N', L, N, ONE, V( KP, 1 ), LDV,
- $ WORK( KP, 1 ), LDWORK )
- DO J = 1, N
- DO I = 1, L
- B( I, J ) = B( I, J ) - WORK( K-L+I, J )
- END DO
- END DO
- *
- * ---------------------------------------------------------------------------
- *
- ELSE IF( ROW .AND. BACKWARD .AND. RIGHT ) THEN
- *
- * ---------------------------------------------------------------------------
- *
- * Let W = [ V I ] ( I is K-by-K, V is K-by-N )
- *
- * Form C H or C H^H where C = [ B A ] (A is M-by-K, B is M-by-N)
- *
- * H = I - W^H T W or H^H = I - W^H T^H W
- *
- * A = A - (A + B V^H) T or A = A - (A + B V^H) T^H
- * B = B - (A + B V^H) T V or B = B - (A + B V^H) T^H V
- *
- * ---------------------------------------------------------------------------
- *
- NP = MIN( L+1, N )
- KP = MIN( K-L+1, K )
- *
- DO J = 1, L
- DO I = 1, M
- WORK( I, K-L+J ) = B( I, J )
- END DO
- END DO
- CALL STRMM( 'R', 'U', 'T', 'N', M, L, ONE, V( KP, 1 ), LDV,
- $ WORK( 1, KP ), LDWORK )
- CALL SGEMM( 'N', 'T', M, L, N-L, ONE, B( 1, NP ), LDB,
- $ V( KP, NP ), LDV, ONE, WORK( 1, KP ), LDWORK )
- CALL SGEMM( 'N', 'T', M, K-L, N, ONE, B, LDB, V, LDV,
- $ ZERO, WORK, LDWORK )
- *
- DO J = 1, K
- DO I = 1, M
- WORK( I, J ) = WORK( I, J ) + A( I, J )
- END DO
- END DO
- *
- CALL STRMM( 'R', 'L', TRANS, 'N', M, K, ONE, T, LDT,
- $ WORK, LDWORK )
- *
- DO J = 1, K
- DO I = 1, M
- A( I, J ) = A( I, J ) - WORK( I, J )
- END DO
- END DO
- *
- CALL SGEMM( 'N', 'N', M, N-L, K, -ONE, WORK, LDWORK,
- $ V( 1, NP ), LDV, ONE, B( 1, NP ), LDB )
- CALL SGEMM( 'N', 'N', M, L, K-L , -ONE, WORK, LDWORK,
- $ V, LDV, ONE, B, LDB )
- CALL STRMM( 'R', 'U', 'N', 'N', M, L, ONE, V( KP, 1 ), LDV,
- $ WORK( 1, KP ), LDWORK )
- DO J = 1, L
- DO I = 1, M
- B( I, J ) = B( I, J ) - WORK( I, K-L+J )
- END DO
- END DO
- *
- END IF
- *
- RETURN
- *
- * End of STPRFB
- *
- END
|