|
- *> \brief \b STPQRT
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download STPQRT + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stpqrt.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stpqrt.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stpqrt.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE STPQRT( M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LDB, LDT, N, M, L, NB
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> STPQRT computes a blocked QR factorization of a real
- *> "triangular-pentagonal" matrix C, which is composed of a
- *> triangular block A and pentagonal block B, using the compact
- *> WY representation for Q.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix B.
- *> M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix B, and the order of the
- *> triangular matrix A.
- *> N >= 0.
- *> \endverbatim
- *>
- *> \param[in] L
- *> \verbatim
- *> L is INTEGER
- *> The number of rows of the upper trapezoidal part of B.
- *> MIN(M,N) >= L >= 0. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] NB
- *> \verbatim
- *> NB is INTEGER
- *> The block size to be used in the blocked QR. N >= NB >= 1.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the upper triangular N-by-N matrix A.
- *> On exit, the elements on and above the diagonal of the array
- *> contain the upper triangular matrix R.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,N)
- *> On entry, the pentagonal M-by-N matrix B. The first M-L rows
- *> are rectangular, and the last L rows are upper trapezoidal.
- *> On exit, B contains the pentagonal matrix V. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] T
- *> \verbatim
- *> T is REAL array, dimension (LDT,N)
- *> The upper triangular block reflectors stored in compact form
- *> as a sequence of upper triangular blocks. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the array T. LDT >= NB.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (NB*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup realOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The input matrix C is a (N+M)-by-N matrix
- *>
- *> C = [ A ]
- *> [ B ]
- *>
- *> where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal
- *> matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N
- *> upper trapezoidal matrix B2:
- *>
- *> B = [ B1 ] <- (M-L)-by-N rectangular
- *> [ B2 ] <- L-by-N upper trapezoidal.
- *>
- *> The upper trapezoidal matrix B2 consists of the first L rows of a
- *> N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N). If L=0,
- *> B is rectangular M-by-N; if M=L=N, B is upper triangular.
- *>
- *> The matrix W stores the elementary reflectors H(i) in the i-th column
- *> below the diagonal (of A) in the (N+M)-by-N input matrix C
- *>
- *> C = [ A ] <- upper triangular N-by-N
- *> [ B ] <- M-by-N pentagonal
- *>
- *> so that W can be represented as
- *>
- *> W = [ I ] <- identity, N-by-N
- *> [ V ] <- M-by-N, same form as B.
- *>
- *> Thus, all of information needed for W is contained on exit in B, which
- *> we call V above. Note that V has the same form as B; that is,
- *>
- *> V = [ V1 ] <- (M-L)-by-N rectangular
- *> [ V2 ] <- L-by-N upper trapezoidal.
- *>
- *> The columns of V represent the vectors which define the H(i)'s.
- *>
- *> The number of blocks is B = ceiling(N/NB), where each
- *> block is of order NB except for the last block, which is of order
- *> IB = N - (B-1)*NB. For each of the B blocks, a upper triangular block
- *> reflector factor is computed: T1, T2, ..., TB. The NB-by-NB (and IB-by-IB
- *> for the last block) T's are stored in the NB-by-N matrix T as
- *>
- *> T = [T1 T2 ... TB].
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE STPQRT( M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK,
- $ INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LDB, LDT, N, M, L, NB
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * ..
- * .. Local Scalars ..
- INTEGER I, IB, LB, MB, IINFO
- * ..
- * .. External Subroutines ..
- EXTERNAL STPQRT2, STPRFB, XERBLA
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( L.LT.0 .OR. (L.GT.MIN(M,N) .AND. MIN(M,N).GE.0)) THEN
- INFO = -3
- ELSE IF( NB.LT.1 .OR. (NB.GT.N .AND. N.GT.0)) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
- INFO = -8
- ELSE IF( LDT.LT.NB ) THEN
- INFO = -10
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'STPQRT', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 ) RETURN
- *
- DO I = 1, N, NB
- *
- * Compute the QR factorization of the current block
- *
- IB = MIN( N-I+1, NB )
- MB = MIN( M-L+I+IB-1, M )
- IF( I.GE.L ) THEN
- LB = 0
- ELSE
- LB = MB-M+L-I+1
- END IF
- *
- CALL STPQRT2( MB, IB, LB, A(I,I), LDA, B( 1, I ), LDB,
- $ T(1, I ), LDT, IINFO )
- *
- * Update by applying H^H to B(:,I+IB:N) from the left
- *
- IF( I+IB.LE.N ) THEN
- CALL STPRFB( 'L', 'T', 'F', 'C', MB, N-I-IB+1, IB, LB,
- $ B( 1, I ), LDB, T( 1, I ), LDT,
- $ A( I, I+IB ), LDA, B( 1, I+IB ), LDB,
- $ WORK, IB )
- END IF
- END DO
- RETURN
- *
- * End of STPQRT
- *
- END
|