|
- *> \brief \b SSYTRI
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SSYTRI + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytri.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytri.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytri.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SSYTRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * REAL A( LDA, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SSYTRI computes the inverse of a real symmetric indefinite matrix
- *> A using the factorization A = U*D*U**T or A = L*D*L**T computed by
- *> SSYTRF.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the details of the factorization are stored
- *> as an upper or lower triangular matrix.
- *> = 'U': Upper triangular, form is A = U*D*U**T;
- *> = 'L': Lower triangular, form is A = L*D*L**T.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the block diagonal matrix D and the multipliers
- *> used to obtain the factor U or L as computed by SSYTRF.
- *>
- *> On exit, if INFO = 0, the (symmetric) inverse of the original
- *> matrix. If UPLO = 'U', the upper triangular part of the
- *> inverse is formed and the part of A below the diagonal is not
- *> referenced; if UPLO = 'L' the lower triangular part of the
- *> inverse is formed and the part of A above the diagonal is
- *> not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges and the block structure of D
- *> as determined by SSYTRF.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
- *> inverse could not be computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup realSYcomputational
- *
- * =====================================================================
- SUBROUTINE SSYTRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- REAL A( LDA, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER K, KP, KSTEP
- REAL AK, AKKP1, AKP1, D, T, TEMP
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SDOT
- EXTERNAL LSAME, SDOT
- * ..
- * .. External Subroutines ..
- EXTERNAL SCOPY, SSWAP, SSYMV, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SSYTRI', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Check that the diagonal matrix D is nonsingular.
- *
- IF( UPPER ) THEN
- *
- * Upper triangular storage: examine D from bottom to top
- *
- DO 10 INFO = N, 1, -1
- IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
- $ RETURN
- 10 CONTINUE
- ELSE
- *
- * Lower triangular storage: examine D from top to bottom.
- *
- DO 20 INFO = 1, N
- IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
- $ RETURN
- 20 CONTINUE
- END IF
- INFO = 0
- *
- IF( UPPER ) THEN
- *
- * Compute inv(A) from the factorization A = U*D*U**T.
- *
- * K is the main loop index, increasing from 1 to N in steps of
- * 1 or 2, depending on the size of the diagonal blocks.
- *
- K = 1
- 30 CONTINUE
- *
- * If K > N, exit from loop.
- *
- IF( K.GT.N )
- $ GO TO 40
- *
- IF( IPIV( K ).GT.0 ) THEN
- *
- * 1 x 1 diagonal block
- *
- * Invert the diagonal block.
- *
- A( K, K ) = ONE / A( K, K )
- *
- * Compute column K of the inverse.
- *
- IF( K.GT.1 ) THEN
- CALL SCOPY( K-1, A( 1, K ), 1, WORK, 1 )
- CALL SSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
- $ A( 1, K ), 1 )
- A( K, K ) = A( K, K ) - SDOT( K-1, WORK, 1, A( 1, K ),
- $ 1 )
- END IF
- KSTEP = 1
- ELSE
- *
- * 2 x 2 diagonal block
- *
- * Invert the diagonal block.
- *
- T = ABS( A( K, K+1 ) )
- AK = A( K, K ) / T
- AKP1 = A( K+1, K+1 ) / T
- AKKP1 = A( K, K+1 ) / T
- D = T*( AK*AKP1-ONE )
- A( K, K ) = AKP1 / D
- A( K+1, K+1 ) = AK / D
- A( K, K+1 ) = -AKKP1 / D
- *
- * Compute columns K and K+1 of the inverse.
- *
- IF( K.GT.1 ) THEN
- CALL SCOPY( K-1, A( 1, K ), 1, WORK, 1 )
- CALL SSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
- $ A( 1, K ), 1 )
- A( K, K ) = A( K, K ) - SDOT( K-1, WORK, 1, A( 1, K ),
- $ 1 )
- A( K, K+1 ) = A( K, K+1 ) -
- $ SDOT( K-1, A( 1, K ), 1, A( 1, K+1 ), 1 )
- CALL SCOPY( K-1, A( 1, K+1 ), 1, WORK, 1 )
- CALL SSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
- $ A( 1, K+1 ), 1 )
- A( K+1, K+1 ) = A( K+1, K+1 ) -
- $ SDOT( K-1, WORK, 1, A( 1, K+1 ), 1 )
- END IF
- KSTEP = 2
- END IF
- *
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K ) THEN
- *
- * Interchange rows and columns K and KP in the leading
- * submatrix A(1:k+1,1:k+1)
- *
- CALL SSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
- CALL SSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
- TEMP = A( K, K )
- A( K, K ) = A( KP, KP )
- A( KP, KP ) = TEMP
- IF( KSTEP.EQ.2 ) THEN
- TEMP = A( K, K+1 )
- A( K, K+1 ) = A( KP, K+1 )
- A( KP, K+1 ) = TEMP
- END IF
- END IF
- *
- K = K + KSTEP
- GO TO 30
- 40 CONTINUE
- *
- ELSE
- *
- * Compute inv(A) from the factorization A = L*D*L**T.
- *
- * K is the main loop index, increasing from 1 to N in steps of
- * 1 or 2, depending on the size of the diagonal blocks.
- *
- K = N
- 50 CONTINUE
- *
- * If K < 1, exit from loop.
- *
- IF( K.LT.1 )
- $ GO TO 60
- *
- IF( IPIV( K ).GT.0 ) THEN
- *
- * 1 x 1 diagonal block
- *
- * Invert the diagonal block.
- *
- A( K, K ) = ONE / A( K, K )
- *
- * Compute column K of the inverse.
- *
- IF( K.LT.N ) THEN
- CALL SCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
- CALL SSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
- $ ZERO, A( K+1, K ), 1 )
- A( K, K ) = A( K, K ) - SDOT( N-K, WORK, 1, A( K+1, K ),
- $ 1 )
- END IF
- KSTEP = 1
- ELSE
- *
- * 2 x 2 diagonal block
- *
- * Invert the diagonal block.
- *
- T = ABS( A( K, K-1 ) )
- AK = A( K-1, K-1 ) / T
- AKP1 = A( K, K ) / T
- AKKP1 = A( K, K-1 ) / T
- D = T*( AK*AKP1-ONE )
- A( K-1, K-1 ) = AKP1 / D
- A( K, K ) = AK / D
- A( K, K-1 ) = -AKKP1 / D
- *
- * Compute columns K-1 and K of the inverse.
- *
- IF( K.LT.N ) THEN
- CALL SCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
- CALL SSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
- $ ZERO, A( K+1, K ), 1 )
- A( K, K ) = A( K, K ) - SDOT( N-K, WORK, 1, A( K+1, K ),
- $ 1 )
- A( K, K-1 ) = A( K, K-1 ) -
- $ SDOT( N-K, A( K+1, K ), 1, A( K+1, K-1 ),
- $ 1 )
- CALL SCOPY( N-K, A( K+1, K-1 ), 1, WORK, 1 )
- CALL SSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
- $ ZERO, A( K+1, K-1 ), 1 )
- A( K-1, K-1 ) = A( K-1, K-1 ) -
- $ SDOT( N-K, WORK, 1, A( K+1, K-1 ), 1 )
- END IF
- KSTEP = 2
- END IF
- *
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K ) THEN
- *
- * Interchange rows and columns K and KP in the trailing
- * submatrix A(k-1:n,k-1:n)
- *
- IF( KP.LT.N )
- $ CALL SSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
- CALL SSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
- TEMP = A( K, K )
- A( K, K ) = A( KP, KP )
- A( KP, KP ) = TEMP
- IF( KSTEP.EQ.2 ) THEN
- TEMP = A( K, K-1 )
- A( K, K-1 ) = A( KP, K-1 )
- A( KP, K-1 ) = TEMP
- END IF
- END IF
- *
- K = K - KSTEP
- GO TO 50
- 60 CONTINUE
- END IF
- *
- RETURN
- *
- * End of SSYTRI
- *
- END
|