|
- *> \brief \b SSTEIN
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SSTEIN + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sstein.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sstein.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sstein.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
- * IWORK, IFAIL, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDZ, M, N
- * ..
- * .. Array Arguments ..
- * INTEGER IBLOCK( * ), IFAIL( * ), ISPLIT( * ),
- * $ IWORK( * )
- * REAL D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SSTEIN computes the eigenvectors of a real symmetric tridiagonal
- *> matrix T corresponding to specified eigenvalues, using inverse
- *> iteration.
- *>
- *> The maximum number of iterations allowed for each eigenvector is
- *> specified by an internal parameter MAXITS (currently set to 5).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> The n diagonal elements of the tridiagonal matrix T.
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is REAL array, dimension (N-1)
- *> The (n-1) subdiagonal elements of the tridiagonal matrix
- *> T, in elements 1 to N-1.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of eigenvectors to be found. 0 <= M <= N.
- *> \endverbatim
- *>
- *> \param[in] W
- *> \verbatim
- *> W is REAL array, dimension (N)
- *> The first M elements of W contain the eigenvalues for
- *> which eigenvectors are to be computed. The eigenvalues
- *> should be grouped by split-off block and ordered from
- *> smallest to largest within the block. ( The output array
- *> W from SSTEBZ with ORDER = 'B' is expected here. )
- *> \endverbatim
- *>
- *> \param[in] IBLOCK
- *> \verbatim
- *> IBLOCK is INTEGER array, dimension (N)
- *> The submatrix indices associated with the corresponding
- *> eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to
- *> the first submatrix from the top, =2 if W(i) belongs to
- *> the second submatrix, etc. ( The output array IBLOCK
- *> from SSTEBZ is expected here. )
- *> \endverbatim
- *>
- *> \param[in] ISPLIT
- *> \verbatim
- *> ISPLIT is INTEGER array, dimension (N)
- *> The splitting points, at which T breaks up into submatrices.
- *> The first submatrix consists of rows/columns 1 to
- *> ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
- *> through ISPLIT( 2 ), etc.
- *> ( The output array ISPLIT from SSTEBZ is expected here. )
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is REAL array, dimension (LDZ, M)
- *> The computed eigenvectors. The eigenvector associated
- *> with the eigenvalue W(i) is stored in the i-th column of
- *> Z. Any vector which fails to converge is set to its current
- *> iterate after MAXITS iterations.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (5*N)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] IFAIL
- *> \verbatim
- *> IFAIL is INTEGER array, dimension (M)
- *> On normal exit, all elements of IFAIL are zero.
- *> If one or more eigenvectors fail to converge after
- *> MAXITS iterations, then their indices are stored in
- *> array IFAIL.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, then i eigenvectors failed to converge
- *> in MAXITS iterations. Their indices are stored in
- *> array IFAIL.
- *> \endverbatim
- *
- *> \par Internal Parameters:
- * =========================
- *>
- *> \verbatim
- *> MAXITS INTEGER, default = 5
- *> The maximum number of iterations performed.
- *>
- *> EXTRA INTEGER, default = 2
- *> The number of iterations performed after norm growth
- *> criterion is satisfied, should be at least 1.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup realOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE SSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
- $ IWORK, IFAIL, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDZ, M, N
- * ..
- * .. Array Arguments ..
- INTEGER IBLOCK( * ), IFAIL( * ), ISPLIT( * ),
- $ IWORK( * )
- REAL D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE, TEN, ODM3, ODM1
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TEN = 1.0E+1,
- $ ODM3 = 1.0E-3, ODM1 = 1.0E-1 )
- INTEGER MAXITS, EXTRA
- PARAMETER ( MAXITS = 5, EXTRA = 2 )
- * ..
- * .. Local Scalars ..
- INTEGER B1, BLKSIZ, BN, GPIND, I, IINFO, INDRV1,
- $ INDRV2, INDRV3, INDRV4, INDRV5, ITS, J, J1,
- $ JBLK, JMAX, NBLK, NRMCHK
- REAL CTR, EPS, EPS1, NRM, ONENRM, ORTOL, PERTOL,
- $ SCL, SEP, STPCRT, TOL, XJ, XJM
- * ..
- * .. Local Arrays ..
- INTEGER ISEED( 4 )
- * ..
- * .. External Functions ..
- INTEGER ISAMAX
- REAL SDOT, SLAMCH, SNRM2
- EXTERNAL ISAMAX, SDOT, SLAMCH, SNRM2
- * ..
- * .. External Subroutines ..
- EXTERNAL SAXPY, SCOPY, SLAGTF, SLAGTS, SLARNV, SSCAL,
- $ XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- DO 10 I = 1, M
- IFAIL( I ) = 0
- 10 CONTINUE
- *
- IF( N.LT.0 ) THEN
- INFO = -1
- ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
- INFO = -4
- ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN
- INFO = -9
- ELSE
- DO 20 J = 2, M
- IF( IBLOCK( J ).LT.IBLOCK( J-1 ) ) THEN
- INFO = -6
- GO TO 30
- END IF
- IF( IBLOCK( J ).EQ.IBLOCK( J-1 ) .AND. W( J ).LT.W( J-1 ) )
- $ THEN
- INFO = -5
- GO TO 30
- END IF
- 20 CONTINUE
- 30 CONTINUE
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SSTEIN', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 .OR. M.EQ.0 ) THEN
- RETURN
- ELSE IF( N.EQ.1 ) THEN
- Z( 1, 1 ) = ONE
- RETURN
- END IF
- *
- * Get machine constants.
- *
- EPS = SLAMCH( 'Precision' )
- *
- * Initialize seed for random number generator SLARNV.
- *
- DO 40 I = 1, 4
- ISEED( I ) = 1
- 40 CONTINUE
- *
- * Initialize pointers.
- *
- INDRV1 = 0
- INDRV2 = INDRV1 + N
- INDRV3 = INDRV2 + N
- INDRV4 = INDRV3 + N
- INDRV5 = INDRV4 + N
- *
- * Compute eigenvectors of matrix blocks.
- *
- J1 = 1
- DO 160 NBLK = 1, IBLOCK( M )
- *
- * Find starting and ending indices of block nblk.
- *
- IF( NBLK.EQ.1 ) THEN
- B1 = 1
- ELSE
- B1 = ISPLIT( NBLK-1 ) + 1
- END IF
- BN = ISPLIT( NBLK )
- BLKSIZ = BN - B1 + 1
- IF( BLKSIZ.EQ.1 )
- $ GO TO 60
- GPIND = J1
- *
- * Compute reorthogonalization criterion and stopping criterion.
- *
- ONENRM = ABS( D( B1 ) ) + ABS( E( B1 ) )
- ONENRM = MAX( ONENRM, ABS( D( BN ) )+ABS( E( BN-1 ) ) )
- DO 50 I = B1 + 1, BN - 1
- ONENRM = MAX( ONENRM, ABS( D( I ) )+ABS( E( I-1 ) )+
- $ ABS( E( I ) ) )
- 50 CONTINUE
- ORTOL = ODM3*ONENRM
- *
- STPCRT = SQRT( ODM1 / BLKSIZ )
- *
- * Loop through eigenvalues of block nblk.
- *
- 60 CONTINUE
- JBLK = 0
- DO 150 J = J1, M
- IF( IBLOCK( J ).NE.NBLK ) THEN
- J1 = J
- GO TO 160
- END IF
- JBLK = JBLK + 1
- XJ = W( J )
- *
- * Skip all the work if the block size is one.
- *
- IF( BLKSIZ.EQ.1 ) THEN
- WORK( INDRV1+1 ) = ONE
- GO TO 120
- END IF
- *
- * If eigenvalues j and j-1 are too close, add a relatively
- * small perturbation.
- *
- IF( JBLK.GT.1 ) THEN
- EPS1 = ABS( EPS*XJ )
- PERTOL = TEN*EPS1
- SEP = XJ - XJM
- IF( SEP.LT.PERTOL )
- $ XJ = XJM + PERTOL
- END IF
- *
- ITS = 0
- NRMCHK = 0
- *
- * Get random starting vector.
- *
- CALL SLARNV( 2, ISEED, BLKSIZ, WORK( INDRV1+1 ) )
- *
- * Copy the matrix T so it won't be destroyed in factorization.
- *
- CALL SCOPY( BLKSIZ, D( B1 ), 1, WORK( INDRV4+1 ), 1 )
- CALL SCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV2+2 ), 1 )
- CALL SCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV3+1 ), 1 )
- *
- * Compute LU factors with partial pivoting ( PT = LU )
- *
- TOL = ZERO
- CALL SLAGTF( BLKSIZ, WORK( INDRV4+1 ), XJ, WORK( INDRV2+2 ),
- $ WORK( INDRV3+1 ), TOL, WORK( INDRV5+1 ), IWORK,
- $ IINFO )
- *
- * Update iteration count.
- *
- 70 CONTINUE
- ITS = ITS + 1
- IF( ITS.GT.MAXITS )
- $ GO TO 100
- *
- * Normalize and scale the righthand side vector Pb.
- *
- JMAX = ISAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
- SCL = BLKSIZ*ONENRM*MAX( EPS,
- $ ABS( WORK( INDRV4+BLKSIZ ) ) ) /
- $ ABS( WORK( INDRV1+JMAX ) )
- CALL SSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
- *
- * Solve the system LU = Pb.
- *
- CALL SLAGTS( -1, BLKSIZ, WORK( INDRV4+1 ), WORK( INDRV2+2 ),
- $ WORK( INDRV3+1 ), WORK( INDRV5+1 ), IWORK,
- $ WORK( INDRV1+1 ), TOL, IINFO )
- *
- * Reorthogonalize by modified Gram-Schmidt if eigenvalues are
- * close enough.
- *
- IF( JBLK.EQ.1 )
- $ GO TO 90
- IF( ABS( XJ-XJM ).GT.ORTOL )
- $ GPIND = J
- IF( GPIND.NE.J ) THEN
- DO 80 I = GPIND, J - 1
- CTR = -SDOT( BLKSIZ, WORK( INDRV1+1 ), 1, Z( B1, I ),
- $ 1 )
- CALL SAXPY( BLKSIZ, CTR, Z( B1, I ), 1,
- $ WORK( INDRV1+1 ), 1 )
- 80 CONTINUE
- END IF
- *
- * Check the infinity norm of the iterate.
- *
- 90 CONTINUE
- JMAX = ISAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
- NRM = ABS( WORK( INDRV1+JMAX ) )
- *
- * Continue for additional iterations after norm reaches
- * stopping criterion.
- *
- IF( NRM.LT.STPCRT )
- $ GO TO 70
- NRMCHK = NRMCHK + 1
- IF( NRMCHK.LT.EXTRA+1 )
- $ GO TO 70
- *
- GO TO 110
- *
- * If stopping criterion was not satisfied, update info and
- * store eigenvector number in array ifail.
- *
- 100 CONTINUE
- INFO = INFO + 1
- IFAIL( INFO ) = J
- *
- * Accept iterate as jth eigenvector.
- *
- 110 CONTINUE
- SCL = ONE / SNRM2( BLKSIZ, WORK( INDRV1+1 ), 1 )
- JMAX = ISAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
- IF( WORK( INDRV1+JMAX ).LT.ZERO )
- $ SCL = -SCL
- CALL SSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
- 120 CONTINUE
- DO 130 I = 1, N
- Z( I, J ) = ZERO
- 130 CONTINUE
- DO 140 I = 1, BLKSIZ
- Z( B1+I-1, J ) = WORK( INDRV1+I )
- 140 CONTINUE
- *
- * Save the shift to check eigenvalue spacing at next
- * iteration.
- *
- XJM = XJ
- *
- 150 CONTINUE
- 160 CONTINUE
- *
- RETURN
- *
- * End of SSTEIN
- *
- END
|