|
- *> \brief <b> SSPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SSPEVD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspevd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspevd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspevd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
- * IWORK, LIWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, UPLO
- * INTEGER INFO, LDZ, LIWORK, LWORK, N
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * REAL AP( * ), W( * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SSPEVD computes all the eigenvalues and, optionally, eigenvectors
- *> of a real symmetric matrix A in packed storage. If eigenvectors are
- *> desired, it uses a divide and conquer algorithm.
- *>
- *> The divide and conquer algorithm makes very mild assumptions about
- *> floating point arithmetic. It will work on machines with a guard
- *> digit in add/subtract, or on those binary machines without guard
- *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
- *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
- *> without guard digits, but we know of none.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AP
- *> \verbatim
- *> AP is REAL array, dimension (N*(N+1)/2)
- *> On entry, the upper or lower triangle of the symmetric matrix
- *> A, packed columnwise in a linear array. The j-th column of A
- *> is stored in the array AP as follows:
- *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
- *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
- *>
- *> On exit, AP is overwritten by values generated during the
- *> reduction to tridiagonal form. If UPLO = 'U', the diagonal
- *> and first superdiagonal of the tridiagonal matrix T overwrite
- *> the corresponding elements of A, and if UPLO = 'L', the
- *> diagonal and first subdiagonal of T overwrite the
- *> corresponding elements of A.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is REAL array, dimension (N)
- *> If INFO = 0, the eigenvalues in ascending order.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is REAL array, dimension (LDZ, N)
- *> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
- *> eigenvectors of the matrix A, with the i-th column of Z
- *> holding the eigenvector associated with W(i).
- *> If JOBZ = 'N', then Z is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1, and if
- *> JOBZ = 'V', LDZ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the required LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> If N <= 1, LWORK must be at least 1.
- *> If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
- *> If JOBZ = 'V' and N > 1, LWORK must be at least
- *> 1 + 6*N + N**2.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the required sizes of the WORK and IWORK
- *> arrays, returns these values as the first entries of the WORK
- *> and IWORK arrays, and no error message related to LWORK or
- *> LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
- *> On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
- *> \endverbatim
- *>
- *> \param[in] LIWORK
- *> \verbatim
- *> LIWORK is INTEGER
- *> The dimension of the array IWORK.
- *> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
- *> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
- *>
- *> If LIWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the required sizes of the WORK and
- *> IWORK arrays, returns these values as the first entries of
- *> the WORK and IWORK arrays, and no error message related to
- *> LWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: if INFO = i, the algorithm failed to converge; i
- *> off-diagonal elements of an intermediate tridiagonal
- *> form did not converge to zero.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup realOTHEReigen
- *
- * =====================================================================
- SUBROUTINE SSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
- $ IWORK, LIWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, UPLO
- INTEGER INFO, LDZ, LIWORK, LWORK, N
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- REAL AP( * ), W( * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, WANTZ
- INTEGER IINFO, INDE, INDTAU, INDWRK, ISCALE, LIWMIN,
- $ LLWORK, LWMIN
- REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
- $ SMLNUM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SLAMCH, SLANSP
- EXTERNAL LSAME, SLAMCH, SLANSP
- * ..
- * .. External Subroutines ..
- EXTERNAL SOPMTR, SSCAL, SSPTRD, SSTEDC, SSTERF, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- WANTZ = LSAME( JOBZ, 'V' )
- LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
- *
- INFO = 0
- IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) )
- $ THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
- INFO = -7
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- IF( N.LE.1 ) THEN
- LIWMIN = 1
- LWMIN = 1
- ELSE
- IF( WANTZ ) THEN
- LIWMIN = 3 + 5*N
- LWMIN = 1 + 6*N + N**2
- ELSE
- LIWMIN = 1
- LWMIN = 2*N
- END IF
- END IF
- IWORK( 1 ) = LIWMIN
- WORK( 1 ) = LWMIN
- *
- IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -9
- ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -11
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SSPEVD', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( N.EQ.1 ) THEN
- W( 1 ) = AP( 1 )
- IF( WANTZ )
- $ Z( 1, 1 ) = ONE
- RETURN
- END IF
- *
- * Get machine constants.
- *
- SAFMIN = SLAMCH( 'Safe minimum' )
- EPS = SLAMCH( 'Precision' )
- SMLNUM = SAFMIN / EPS
- BIGNUM = ONE / SMLNUM
- RMIN = SQRT( SMLNUM )
- RMAX = SQRT( BIGNUM )
- *
- * Scale matrix to allowable range, if necessary.
- *
- ANRM = SLANSP( 'M', UPLO, N, AP, WORK )
- ISCALE = 0
- IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
- ISCALE = 1
- SIGMA = RMIN / ANRM
- ELSE IF( ANRM.GT.RMAX ) THEN
- ISCALE = 1
- SIGMA = RMAX / ANRM
- END IF
- IF( ISCALE.EQ.1 ) THEN
- CALL SSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
- END IF
- *
- * Call SSPTRD to reduce symmetric packed matrix to tridiagonal form.
- *
- INDE = 1
- INDTAU = INDE + N
- CALL SSPTRD( UPLO, N, AP, W, WORK( INDE ), WORK( INDTAU ), IINFO )
- *
- * For eigenvalues only, call SSTERF. For eigenvectors, first call
- * SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
- * tridiagonal matrix, then call SOPMTR to multiply it by the
- * Householder transformations represented in AP.
- *
- IF( .NOT.WANTZ ) THEN
- CALL SSTERF( N, W, WORK( INDE ), INFO )
- ELSE
- INDWRK = INDTAU + N
- LLWORK = LWORK - INDWRK + 1
- CALL SSTEDC( 'I', N, W, WORK( INDE ), Z, LDZ, WORK( INDWRK ),
- $ LLWORK, IWORK, LIWORK, INFO )
- CALL SOPMTR( 'L', UPLO, 'N', N, N, AP, WORK( INDTAU ), Z, LDZ,
- $ WORK( INDWRK ), IINFO )
- END IF
- *
- * If matrix was scaled, then rescale eigenvalues appropriately.
- *
- IF( ISCALE.EQ.1 )
- $ CALL SSCAL( N, ONE / SIGMA, W, 1 )
- *
- WORK( 1 ) = LWMIN
- IWORK( 1 ) = LIWMIN
- RETURN
- *
- * End of SSPEVD
- *
- END
|