|
- *> \brief \b SPPTRI
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SPPTRI + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spptri.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spptri.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spptri.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SPPTRI( UPLO, N, AP, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, N
- * ..
- * .. Array Arguments ..
- * REAL AP( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SPPTRI computes the inverse of a real symmetric positive definite
- *> matrix A using the Cholesky factorization A = U**T*U or A = L*L**T
- *> computed by SPPTRF.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangular factor is stored in AP;
- *> = 'L': Lower triangular factor is stored in AP.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AP
- *> \verbatim
- *> AP is REAL array, dimension (N*(N+1)/2)
- *> On entry, the triangular factor U or L from the Cholesky
- *> factorization A = U**T*U or A = L*L**T, packed columnwise as
- *> a linear array. The j-th column of U or L is stored in the
- *> array AP as follows:
- *> if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
- *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
- *>
- *> On exit, the upper or lower triangle of the (symmetric)
- *> inverse of A, overwriting the input factor U or L.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, the (i,i) element of the factor U or L is
- *> zero, and the inverse could not be computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup realOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE SPPTRI( UPLO, N, AP, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, N
- * ..
- * .. Array Arguments ..
- REAL AP( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE
- PARAMETER ( ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER J, JC, JJ, JJN
- REAL AJJ
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SDOT
- EXTERNAL LSAME, SDOT
- * ..
- * .. External Subroutines ..
- EXTERNAL SSCAL, SSPR, STPMV, STPTRI, XERBLA
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SPPTRI', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Invert the triangular Cholesky factor U or L.
- *
- CALL STPTRI( UPLO, 'Non-unit', N, AP, INFO )
- IF( INFO.GT.0 )
- $ RETURN
- *
- IF( UPPER ) THEN
- *
- * Compute the product inv(U) * inv(U)**T.
- *
- JJ = 0
- DO 10 J = 1, N
- JC = JJ + 1
- JJ = JJ + J
- IF( J.GT.1 )
- $ CALL SSPR( 'Upper', J-1, ONE, AP( JC ), 1, AP )
- AJJ = AP( JJ )
- CALL SSCAL( J, AJJ, AP( JC ), 1 )
- 10 CONTINUE
- *
- ELSE
- *
- * Compute the product inv(L)**T * inv(L).
- *
- JJ = 1
- DO 20 J = 1, N
- JJN = JJ + N - J + 1
- AP( JJ ) = SDOT( N-J+1, AP( JJ ), 1, AP( JJ ), 1 )
- IF( J.LT.N )
- $ CALL STPMV( 'Lower', 'Transpose', 'Non-unit', N-J,
- $ AP( JJN ), AP( JJ+1 ), 1 )
- JJ = JJN
- 20 CONTINUE
- END IF
- *
- RETURN
- *
- * End of SPPTRI
- *
- END
|