|
- *> \brief \b SPPEQU
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SPPEQU + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sppequ.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sppequ.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sppequ.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, N
- * REAL AMAX, SCOND
- * ..
- * .. Array Arguments ..
- * REAL AP( * ), S( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SPPEQU computes row and column scalings intended to equilibrate a
- *> symmetric positive definite matrix A in packed storage and reduce
- *> its condition number (with respect to the two-norm). S contains the
- *> scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
- *> B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
- *> This choice of S puts the condition number of B within a factor N of
- *> the smallest possible condition number over all possible diagonal
- *> scalings.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] AP
- *> \verbatim
- *> AP is REAL array, dimension (N*(N+1)/2)
- *> The upper or lower triangle of the symmetric matrix A, packed
- *> columnwise in a linear array. The j-th column of A is stored
- *> in the array AP as follows:
- *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
- *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is REAL array, dimension (N)
- *> If INFO = 0, S contains the scale factors for A.
- *> \endverbatim
- *>
- *> \param[out] SCOND
- *> \verbatim
- *> SCOND is REAL
- *> If INFO = 0, S contains the ratio of the smallest S(i) to
- *> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
- *> large nor too small, it is not worth scaling by S.
- *> \endverbatim
- *>
- *> \param[out] AMAX
- *> \verbatim
- *> AMAX is REAL
- *> Absolute value of largest matrix element. If AMAX is very
- *> close to overflow or very close to underflow, the matrix
- *> should be scaled.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, the i-th diagonal element is nonpositive.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup realOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE SPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, N
- REAL AMAX, SCOND
- * ..
- * .. Array Arguments ..
- REAL AP( * ), S( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER I, JJ
- REAL SMIN
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SPPEQU', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 ) THEN
- SCOND = ONE
- AMAX = ZERO
- RETURN
- END IF
- *
- * Initialize SMIN and AMAX.
- *
- S( 1 ) = AP( 1 )
- SMIN = S( 1 )
- AMAX = S( 1 )
- *
- IF( UPPER ) THEN
- *
- * UPLO = 'U': Upper triangle of A is stored.
- * Find the minimum and maximum diagonal elements.
- *
- JJ = 1
- DO 10 I = 2, N
- JJ = JJ + I
- S( I ) = AP( JJ )
- SMIN = MIN( SMIN, S( I ) )
- AMAX = MAX( AMAX, S( I ) )
- 10 CONTINUE
- *
- ELSE
- *
- * UPLO = 'L': Lower triangle of A is stored.
- * Find the minimum and maximum diagonal elements.
- *
- JJ = 1
- DO 20 I = 2, N
- JJ = JJ + N - I + 2
- S( I ) = AP( JJ )
- SMIN = MIN( SMIN, S( I ) )
- AMAX = MAX( AMAX, S( I ) )
- 20 CONTINUE
- END IF
- *
- IF( SMIN.LE.ZERO ) THEN
- *
- * Find the first non-positive diagonal element and return.
- *
- DO 30 I = 1, N
- IF( S( I ).LE.ZERO ) THEN
- INFO = I
- RETURN
- END IF
- 30 CONTINUE
- ELSE
- *
- * Set the scale factors to the reciprocals
- * of the diagonal elements.
- *
- DO 40 I = 1, N
- S( I ) = ONE / SQRT( S( I ) )
- 40 CONTINUE
- *
- * Compute SCOND = min(S(I)) / max(S(I))
- *
- SCOND = SQRT( SMIN ) / SQRT( AMAX )
- END IF
- RETURN
- *
- * End of SPPEQU
- *
- END
|