|
- *> \brief \b SPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm).
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SPOTF2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spotf2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spotf2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spotf2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SPOTF2( UPLO, N, A, LDA, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SPOTF2 computes the Cholesky factorization of a real symmetric
- *> positive definite matrix A.
- *>
- *> The factorization has the form
- *> A = U**T * U , if UPLO = 'U', or
- *> A = L * L**T, if UPLO = 'L',
- *> where U is an upper triangular matrix and L is lower triangular.
- *>
- *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> symmetric matrix A is stored.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
- *> n by n upper triangular part of A contains the upper
- *> triangular part of the matrix A, and the strictly lower
- *> triangular part of A is not referenced. If UPLO = 'L', the
- *> leading n by n lower triangular part of A contains the lower
- *> triangular part of the matrix A, and the strictly upper
- *> triangular part of A is not referenced.
- *>
- *> On exit, if INFO = 0, the factor U or L from the Cholesky
- *> factorization A = U**T *U or A = L*L**T.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -k, the k-th argument had an illegal value
- *> > 0: if INFO = k, the leading minor of order k is not
- *> positive definite, and the factorization could not be
- *> completed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup realPOcomputational
- *
- * =====================================================================
- SUBROUTINE SPOTF2( UPLO, N, A, LDA, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER J
- REAL AJJ
- * ..
- * .. External Functions ..
- LOGICAL LSAME, SISNAN
- REAL SDOT
- EXTERNAL LSAME, SDOT, SISNAN
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMV, SSCAL, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SPOTF2', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( UPPER ) THEN
- *
- * Compute the Cholesky factorization A = U**T *U.
- *
- DO 10 J = 1, N
- *
- * Compute U(J,J) and test for non-positive-definiteness.
- *
- AJJ = A( J, J ) - SDOT( J-1, A( 1, J ), 1, A( 1, J ), 1 )
- IF( AJJ.LE.ZERO.OR.SISNAN( AJJ ) ) THEN
- A( J, J ) = AJJ
- GO TO 30
- END IF
- AJJ = SQRT( AJJ )
- A( J, J ) = AJJ
- *
- * Compute elements J+1:N of row J.
- *
- IF( J.LT.N ) THEN
- CALL SGEMV( 'Transpose', J-1, N-J, -ONE, A( 1, J+1 ),
- $ LDA, A( 1, J ), 1, ONE, A( J, J+1 ), LDA )
- CALL SSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
- END IF
- 10 CONTINUE
- ELSE
- *
- * Compute the Cholesky factorization A = L*L**T.
- *
- DO 20 J = 1, N
- *
- * Compute L(J,J) and test for non-positive-definiteness.
- *
- AJJ = A( J, J ) - SDOT( J-1, A( J, 1 ), LDA, A( J, 1 ),
- $ LDA )
- IF( AJJ.LE.ZERO.OR.SISNAN( AJJ ) ) THEN
- A( J, J ) = AJJ
- GO TO 30
- END IF
- AJJ = SQRT( AJJ )
- A( J, J ) = AJJ
- *
- * Compute elements J+1:N of column J.
- *
- IF( J.LT.N ) THEN
- CALL SGEMV( 'No transpose', N-J, J-1, -ONE, A( J+1, 1 ),
- $ LDA, A( J, 1 ), LDA, ONE, A( J+1, J ), 1 )
- CALL SSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
- END IF
- 20 CONTINUE
- END IF
- GO TO 40
- *
- 30 CONTINUE
- INFO = J
- *
- 40 CONTINUE
- RETURN
- *
- * End of SPOTF2
- *
- END
|