|
- *> \brief \b SPFTRS
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SPFTRS + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spftrs.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spftrs.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spftrs.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANSR, UPLO
- * INTEGER INFO, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- * REAL A( 0: * ), B( LDB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SPFTRS solves a system of linear equations A*X = B with a symmetric
- *> positive definite matrix A using the Cholesky factorization
- *> A = U**T*U or A = L*L**T computed by SPFTRF.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANSR
- *> \verbatim
- *> TRANSR is CHARACTER*1
- *> = 'N': The Normal TRANSR of RFP A is stored;
- *> = 'T': The Transpose TRANSR of RFP A is stored.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of RFP A is stored;
- *> = 'L': Lower triangle of RFP A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is REAL array, dimension ( N*(N+1)/2 )
- *> The triangular factor U or L from the Cholesky factorization
- *> of RFP A = U**H*U or RFP A = L*L**T, as computed by SPFTRF.
- *> See note below for more details about RFP A.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,NRHS)
- *> On entry, the right hand side matrix B.
- *> On exit, the solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup realOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> We first consider Rectangular Full Packed (RFP) Format when N is
- *> even. We give an example where N = 6.
- *>
- *> AP is Upper AP is Lower
- *>
- *> 00 01 02 03 04 05 00
- *> 11 12 13 14 15 10 11
- *> 22 23 24 25 20 21 22
- *> 33 34 35 30 31 32 33
- *> 44 45 40 41 42 43 44
- *> 55 50 51 52 53 54 55
- *>
- *>
- *> Let TRANSR = 'N'. RFP holds AP as follows:
- *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
- *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
- *> the transpose of the first three columns of AP upper.
- *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
- *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
- *> the transpose of the last three columns of AP lower.
- *> This covers the case N even and TRANSR = 'N'.
- *>
- *> RFP A RFP A
- *>
- *> 03 04 05 33 43 53
- *> 13 14 15 00 44 54
- *> 23 24 25 10 11 55
- *> 33 34 35 20 21 22
- *> 00 44 45 30 31 32
- *> 01 11 55 40 41 42
- *> 02 12 22 50 51 52
- *>
- *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
- *> transpose of RFP A above. One therefore gets:
- *>
- *>
- *> RFP A RFP A
- *>
- *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
- *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
- *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
- *>
- *>
- *> We then consider Rectangular Full Packed (RFP) Format when N is
- *> odd. We give an example where N = 5.
- *>
- *> AP is Upper AP is Lower
- *>
- *> 00 01 02 03 04 00
- *> 11 12 13 14 10 11
- *> 22 23 24 20 21 22
- *> 33 34 30 31 32 33
- *> 44 40 41 42 43 44
- *>
- *>
- *> Let TRANSR = 'N'. RFP holds AP as follows:
- *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
- *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
- *> the transpose of the first two columns of AP upper.
- *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
- *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
- *> the transpose of the last two columns of AP lower.
- *> This covers the case N odd and TRANSR = 'N'.
- *>
- *> RFP A RFP A
- *>
- *> 02 03 04 00 33 43
- *> 12 13 14 10 11 44
- *> 22 23 24 20 21 22
- *> 00 33 34 30 31 32
- *> 01 11 44 40 41 42
- *>
- *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
- *> transpose of RFP A above. One therefore gets:
- *>
- *> RFP A RFP A
- *>
- *> 02 12 22 00 01 00 10 20 30 40 50
- *> 03 13 23 33 11 33 11 21 31 41 51
- *> 04 14 24 34 44 43 44 22 32 42 52
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE SPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER TRANSR, UPLO
- INTEGER INFO, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- REAL A( 0: * ), B( LDB, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE
- PARAMETER ( ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LOWER, NORMALTRANSR
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, STFSM
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- NORMALTRANSR = LSAME( TRANSR, 'N' )
- LOWER = LSAME( UPLO, 'L' )
- IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -7
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SPFTRS', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 .OR. NRHS.EQ.0 )
- $ RETURN
- *
- * start execution: there are two triangular solves
- *
- IF( LOWER ) THEN
- CALL STFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, ONE, A, B,
- $ LDB )
- CALL STFSM( TRANSR, 'L', UPLO, 'T', 'N', N, NRHS, ONE, A, B,
- $ LDB )
- ELSE
- CALL STFSM( TRANSR, 'L', UPLO, 'T', 'N', N, NRHS, ONE, A, B,
- $ LDB )
- CALL STFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, ONE, A, B,
- $ LDB )
- END IF
- *
- RETURN
- *
- * End of SPFTRS
- *
- END
|