|
- *> \brief \b SPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (unblocked algorithm).
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SPBTF2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spbtf2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spbtf2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spbtf2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SPBTF2( UPLO, N, KD, AB, LDAB, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, KD, LDAB, N
- * ..
- * .. Array Arguments ..
- * REAL AB( LDAB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SPBTF2 computes the Cholesky factorization of a real symmetric
- *> positive definite band matrix A.
- *>
- *> The factorization has the form
- *> A = U**T * U , if UPLO = 'U', or
- *> A = L * L**T, if UPLO = 'L',
- *> where U is an upper triangular matrix, U**T is the transpose of U, and
- *> L is lower triangular.
- *>
- *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> symmetric matrix A is stored:
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KD
- *> \verbatim
- *> KD is INTEGER
- *> The number of super-diagonals of the matrix A if UPLO = 'U',
- *> or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AB
- *> \verbatim
- *> AB is REAL array, dimension (LDAB,N)
- *> On entry, the upper or lower triangle of the symmetric band
- *> matrix A, stored in the first KD+1 rows of the array. The
- *> j-th column of A is stored in the j-th column of the array AB
- *> as follows:
- *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
- *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
- *>
- *> On exit, if INFO = 0, the triangular factor U or L from the
- *> Cholesky factorization A = U**T*U or A = L*L**T of the band
- *> matrix A, in the same storage format as A.
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KD+1.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -k, the k-th argument had an illegal value
- *> > 0: if INFO = k, the leading minor of order k is not
- *> positive definite, and the factorization could not be
- *> completed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup realOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The band storage scheme is illustrated by the following example, when
- *> N = 6, KD = 2, and UPLO = 'U':
- *>
- *> On entry: On exit:
- *>
- *> * * a13 a24 a35 a46 * * u13 u24 u35 u46
- *> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
- *> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
- *>
- *> Similarly, if UPLO = 'L' the format of A is as follows:
- *>
- *> On entry: On exit:
- *>
- *> a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
- *> a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
- *> a31 a42 a53 a64 * * l31 l42 l53 l64 * *
- *>
- *> Array elements marked * are not used by the routine.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE SPBTF2( UPLO, N, KD, AB, LDAB, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, KD, LDAB, N
- * ..
- * .. Array Arguments ..
- REAL AB( LDAB, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER J, KLD, KN
- REAL AJJ
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL SSCAL, SSYR, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( KD.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDAB.LT.KD+1 ) THEN
- INFO = -5
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SPBTF2', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- KLD = MAX( 1, LDAB-1 )
- *
- IF( UPPER ) THEN
- *
- * Compute the Cholesky factorization A = U**T*U.
- *
- DO 10 J = 1, N
- *
- * Compute U(J,J) and test for non-positive-definiteness.
- *
- AJJ = AB( KD+1, J )
- IF( AJJ.LE.ZERO )
- $ GO TO 30
- AJJ = SQRT( AJJ )
- AB( KD+1, J ) = AJJ
- *
- * Compute elements J+1:J+KN of row J and update the
- * trailing submatrix within the band.
- *
- KN = MIN( KD, N-J )
- IF( KN.GT.0 ) THEN
- CALL SSCAL( KN, ONE / AJJ, AB( KD, J+1 ), KLD )
- CALL SSYR( 'Upper', KN, -ONE, AB( KD, J+1 ), KLD,
- $ AB( KD+1, J+1 ), KLD )
- END IF
- 10 CONTINUE
- ELSE
- *
- * Compute the Cholesky factorization A = L*L**T.
- *
- DO 20 J = 1, N
- *
- * Compute L(J,J) and test for non-positive-definiteness.
- *
- AJJ = AB( 1, J )
- IF( AJJ.LE.ZERO )
- $ GO TO 30
- AJJ = SQRT( AJJ )
- AB( 1, J ) = AJJ
- *
- * Compute elements J+1:J+KN of column J and update the
- * trailing submatrix within the band.
- *
- KN = MIN( KD, N-J )
- IF( KN.GT.0 ) THEN
- CALL SSCAL( KN, ONE / AJJ, AB( 2, J ), 1 )
- CALL SSYR( 'Lower', KN, -ONE, AB( 2, J ), 1,
- $ AB( 1, J+1 ), KLD )
- END IF
- 20 CONTINUE
- END IF
- RETURN
- *
- 30 CONTINUE
- INFO = J
- RETURN
- *
- * End of SPBTF2
- *
- END
|