|
- *> \brief \b SLATRS solves a triangular system of equations with the scale factor set to prevent overflow.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLATRS + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slatrs.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slatrs.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slatrs.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
- * CNORM, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIAG, NORMIN, TRANS, UPLO
- * INTEGER INFO, LDA, N
- * REAL SCALE
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), CNORM( * ), X( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLATRS solves one of the triangular systems
- *>
- *> A *x = s*b or A**T*x = s*b
- *>
- *> with scaling to prevent overflow. Here A is an upper or lower
- *> triangular matrix, A**T denotes the transpose of A, x and b are
- *> n-element vectors, and s is a scaling factor, usually less than
- *> or equal to 1, chosen so that the components of x will be less than
- *> the overflow threshold. If the unscaled problem will not cause
- *> overflow, the Level 2 BLAS routine STRSV is called. If the matrix A
- *> is singular (A(j,j) = 0 for some j), then s is set to 0 and a
- *> non-trivial solution to A*x = 0 is returned.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the matrix A is upper or lower triangular.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the operation applied to A.
- *> = 'N': Solve A * x = s*b (No transpose)
- *> = 'T': Solve A**T* x = s*b (Transpose)
- *> = 'C': Solve A**T* x = s*b (Conjugate transpose = Transpose)
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> Specifies whether or not the matrix A is unit triangular.
- *> = 'N': Non-unit triangular
- *> = 'U': Unit triangular
- *> \endverbatim
- *>
- *> \param[in] NORMIN
- *> \verbatim
- *> NORMIN is CHARACTER*1
- *> Specifies whether CNORM has been set or not.
- *> = 'Y': CNORM contains the column norms on entry
- *> = 'N': CNORM is not set on entry. On exit, the norms will
- *> be computed and stored in CNORM.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> The triangular matrix A. If UPLO = 'U', the leading n by n
- *> upper triangular part of the array A contains the upper
- *> triangular matrix, and the strictly lower triangular part of
- *> A is not referenced. If UPLO = 'L', the leading n by n lower
- *> triangular part of the array A contains the lower triangular
- *> matrix, and the strictly upper triangular part of A is not
- *> referenced. If DIAG = 'U', the diagonal elements of A are
- *> also not referenced and are assumed to be 1.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max (1,N).
- *> \endverbatim
- *>
- *> \param[in,out] X
- *> \verbatim
- *> X is REAL array, dimension (N)
- *> On entry, the right hand side b of the triangular system.
- *> On exit, X is overwritten by the solution vector x.
- *> \endverbatim
- *>
- *> \param[out] SCALE
- *> \verbatim
- *> SCALE is REAL
- *> The scaling factor s for the triangular system
- *> A * x = s*b or A**T* x = s*b.
- *> If SCALE = 0, the matrix A is singular or badly scaled, and
- *> the vector x is an exact or approximate solution to A*x = 0.
- *> \endverbatim
- *>
- *> \param[in,out] CNORM
- *> \verbatim
- *> CNORM is REAL array, dimension (N)
- *>
- *> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
- *> contains the norm of the off-diagonal part of the j-th column
- *> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
- *> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
- *> must be greater than or equal to the 1-norm.
- *>
- *> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
- *> returns the 1-norm of the offdiagonal part of the j-th column
- *> of A.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -k, the k-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup realOTHERauxiliary
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> A rough bound on x is computed; if that is less than overflow, STRSV
- *> is called, otherwise, specific code is used which checks for possible
- *> overflow or divide-by-zero at every operation.
- *>
- *> A columnwise scheme is used for solving A*x = b. The basic algorithm
- *> if A is lower triangular is
- *>
- *> x[1:n] := b[1:n]
- *> for j = 1, ..., n
- *> x(j) := x(j) / A(j,j)
- *> x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
- *> end
- *>
- *> Define bounds on the components of x after j iterations of the loop:
- *> M(j) = bound on x[1:j]
- *> G(j) = bound on x[j+1:n]
- *> Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
- *>
- *> Then for iteration j+1 we have
- *> M(j+1) <= G(j) / | A(j+1,j+1) |
- *> G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
- *> <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
- *>
- *> where CNORM(j+1) is greater than or equal to the infinity-norm of
- *> column j+1 of A, not counting the diagonal. Hence
- *>
- *> G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
- *> 1<=i<=j
- *> and
- *>
- *> |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
- *> 1<=i< j
- *>
- *> Since |x(j)| <= M(j), we use the Level 2 BLAS routine STRSV if the
- *> reciprocal of the largest M(j), j=1,..,n, is larger than
- *> max(underflow, 1/overflow).
- *>
- *> The bound on x(j) is also used to determine when a step in the
- *> columnwise method can be performed without fear of overflow. If
- *> the computed bound is greater than a large constant, x is scaled to
- *> prevent overflow, but if the bound overflows, x is set to 0, x(j) to
- *> 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
- *>
- *> Similarly, a row-wise scheme is used to solve A**T*x = b. The basic
- *> algorithm for A upper triangular is
- *>
- *> for j = 1, ..., n
- *> x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
- *> end
- *>
- *> We simultaneously compute two bounds
- *> G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
- *> M(j) = bound on x(i), 1<=i<=j
- *>
- *> The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
- *> add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
- *> Then the bound on x(j) is
- *>
- *> M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
- *>
- *> <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
- *> 1<=i<=j
- *>
- *> and we can safely call STRSV if 1/M(n) and 1/G(n) are both greater
- *> than max(underflow, 1/overflow).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE SLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
- $ CNORM, INFO )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER DIAG, NORMIN, TRANS, UPLO
- INTEGER INFO, LDA, N
- REAL SCALE
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), CNORM( * ), X( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, HALF, ONE
- PARAMETER ( ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL NOTRAN, NOUNIT, UPPER
- INTEGER I, IMAX, J, JFIRST, JINC, JLAST
- REAL BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
- $ TMAX, TSCAL, USCAL, XBND, XJ, XMAX
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ISAMAX
- REAL SASUM, SDOT, SLAMCH
- EXTERNAL LSAME, ISAMAX, SASUM, SDOT, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL SAXPY, SSCAL, STRSV, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- NOTRAN = LSAME( TRANS, 'N' )
- NOUNIT = LSAME( DIAG, 'N' )
- *
- * Test the input parameters.
- *
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
- $ LSAME( TRANS, 'C' ) ) THEN
- INFO = -2
- ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
- INFO = -3
- ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
- $ LSAME( NORMIN, 'N' ) ) THEN
- INFO = -4
- ELSE IF( N.LT.0 ) THEN
- INFO = -5
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -7
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SLATRS', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Determine machine dependent parameters to control overflow.
- *
- SMLNUM = SLAMCH( 'Safe minimum' ) / SLAMCH( 'Precision' )
- BIGNUM = ONE / SMLNUM
- SCALE = ONE
- *
- IF( LSAME( NORMIN, 'N' ) ) THEN
- *
- * Compute the 1-norm of each column, not including the diagonal.
- *
- IF( UPPER ) THEN
- *
- * A is upper triangular.
- *
- DO 10 J = 1, N
- CNORM( J ) = SASUM( J-1, A( 1, J ), 1 )
- 10 CONTINUE
- ELSE
- *
- * A is lower triangular.
- *
- DO 20 J = 1, N - 1
- CNORM( J ) = SASUM( N-J, A( J+1, J ), 1 )
- 20 CONTINUE
- CNORM( N ) = ZERO
- END IF
- END IF
- *
- * Scale the column norms by TSCAL if the maximum element in CNORM is
- * greater than BIGNUM.
- *
- IMAX = ISAMAX( N, CNORM, 1 )
- TMAX = CNORM( IMAX )
- IF( TMAX.LE.BIGNUM ) THEN
- TSCAL = ONE
- ELSE
- TSCAL = ONE / ( SMLNUM*TMAX )
- CALL SSCAL( N, TSCAL, CNORM, 1 )
- END IF
- *
- * Compute a bound on the computed solution vector to see if the
- * Level 2 BLAS routine STRSV can be used.
- *
- J = ISAMAX( N, X, 1 )
- XMAX = ABS( X( J ) )
- XBND = XMAX
- IF( NOTRAN ) THEN
- *
- * Compute the growth in A * x = b.
- *
- IF( UPPER ) THEN
- JFIRST = N
- JLAST = 1
- JINC = -1
- ELSE
- JFIRST = 1
- JLAST = N
- JINC = 1
- END IF
- *
- IF( TSCAL.NE.ONE ) THEN
- GROW = ZERO
- GO TO 50
- END IF
- *
- IF( NOUNIT ) THEN
- *
- * A is non-unit triangular.
- *
- * Compute GROW = 1/G(j) and XBND = 1/M(j).
- * Initially, G(0) = max{x(i), i=1,...,n}.
- *
- GROW = ONE / MAX( XBND, SMLNUM )
- XBND = GROW
- DO 30 J = JFIRST, JLAST, JINC
- *
- * Exit the loop if the growth factor is too small.
- *
- IF( GROW.LE.SMLNUM )
- $ GO TO 50
- *
- * M(j) = G(j-1) / abs(A(j,j))
- *
- TJJ = ABS( A( J, J ) )
- XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
- IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
- *
- * G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
- *
- GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
- ELSE
- *
- * G(j) could overflow, set GROW to 0.
- *
- GROW = ZERO
- END IF
- 30 CONTINUE
- GROW = XBND
- ELSE
- *
- * A is unit triangular.
- *
- * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
- *
- GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
- DO 40 J = JFIRST, JLAST, JINC
- *
- * Exit the loop if the growth factor is too small.
- *
- IF( GROW.LE.SMLNUM )
- $ GO TO 50
- *
- * G(j) = G(j-1)*( 1 + CNORM(j) )
- *
- GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
- 40 CONTINUE
- END IF
- 50 CONTINUE
- *
- ELSE
- *
- * Compute the growth in A**T * x = b.
- *
- IF( UPPER ) THEN
- JFIRST = 1
- JLAST = N
- JINC = 1
- ELSE
- JFIRST = N
- JLAST = 1
- JINC = -1
- END IF
- *
- IF( TSCAL.NE.ONE ) THEN
- GROW = ZERO
- GO TO 80
- END IF
- *
- IF( NOUNIT ) THEN
- *
- * A is non-unit triangular.
- *
- * Compute GROW = 1/G(j) and XBND = 1/M(j).
- * Initially, M(0) = max{x(i), i=1,...,n}.
- *
- GROW = ONE / MAX( XBND, SMLNUM )
- XBND = GROW
- DO 60 J = JFIRST, JLAST, JINC
- *
- * Exit the loop if the growth factor is too small.
- *
- IF( GROW.LE.SMLNUM )
- $ GO TO 80
- *
- * G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
- *
- XJ = ONE + CNORM( J )
- GROW = MIN( GROW, XBND / XJ )
- *
- * M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
- *
- TJJ = ABS( A( J, J ) )
- IF( XJ.GT.TJJ )
- $ XBND = XBND*( TJJ / XJ )
- 60 CONTINUE
- GROW = MIN( GROW, XBND )
- ELSE
- *
- * A is unit triangular.
- *
- * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
- *
- GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
- DO 70 J = JFIRST, JLAST, JINC
- *
- * Exit the loop if the growth factor is too small.
- *
- IF( GROW.LE.SMLNUM )
- $ GO TO 80
- *
- * G(j) = ( 1 + CNORM(j) )*G(j-1)
- *
- XJ = ONE + CNORM( J )
- GROW = GROW / XJ
- 70 CONTINUE
- END IF
- 80 CONTINUE
- END IF
- *
- IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
- *
- * Use the Level 2 BLAS solve if the reciprocal of the bound on
- * elements of X is not too small.
- *
- CALL STRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
- ELSE
- *
- * Use a Level 1 BLAS solve, scaling intermediate results.
- *
- IF( XMAX.GT.BIGNUM ) THEN
- *
- * Scale X so that its components are less than or equal to
- * BIGNUM in absolute value.
- *
- SCALE = BIGNUM / XMAX
- CALL SSCAL( N, SCALE, X, 1 )
- XMAX = BIGNUM
- END IF
- *
- IF( NOTRAN ) THEN
- *
- * Solve A * x = b
- *
- DO 100 J = JFIRST, JLAST, JINC
- *
- * Compute x(j) = b(j) / A(j,j), scaling x if necessary.
- *
- XJ = ABS( X( J ) )
- IF( NOUNIT ) THEN
- TJJS = A( J, J )*TSCAL
- ELSE
- TJJS = TSCAL
- IF( TSCAL.EQ.ONE )
- $ GO TO 95
- END IF
- TJJ = ABS( TJJS )
- IF( TJJ.GT.SMLNUM ) THEN
- *
- * abs(A(j,j)) > SMLNUM:
- *
- IF( TJJ.LT.ONE ) THEN
- IF( XJ.GT.TJJ*BIGNUM ) THEN
- *
- * Scale x by 1/b(j).
- *
- REC = ONE / XJ
- CALL SSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- END IF
- X( J ) = X( J ) / TJJS
- XJ = ABS( X( J ) )
- ELSE IF( TJJ.GT.ZERO ) THEN
- *
- * 0 < abs(A(j,j)) <= SMLNUM:
- *
- IF( XJ.GT.TJJ*BIGNUM ) THEN
- *
- * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
- * to avoid overflow when dividing by A(j,j).
- *
- REC = ( TJJ*BIGNUM ) / XJ
- IF( CNORM( J ).GT.ONE ) THEN
- *
- * Scale by 1/CNORM(j) to avoid overflow when
- * multiplying x(j) times column j.
- *
- REC = REC / CNORM( J )
- END IF
- CALL SSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- X( J ) = X( J ) / TJJS
- XJ = ABS( X( J ) )
- ELSE
- *
- * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
- * scale = 0, and compute a solution to A*x = 0.
- *
- DO 90 I = 1, N
- X( I ) = ZERO
- 90 CONTINUE
- X( J ) = ONE
- XJ = ONE
- SCALE = ZERO
- XMAX = ZERO
- END IF
- 95 CONTINUE
- *
- * Scale x if necessary to avoid overflow when adding a
- * multiple of column j of A.
- *
- IF( XJ.GT.ONE ) THEN
- REC = ONE / XJ
- IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
- *
- * Scale x by 1/(2*abs(x(j))).
- *
- REC = REC*HALF
- CALL SSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- END IF
- ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
- *
- * Scale x by 1/2.
- *
- CALL SSCAL( N, HALF, X, 1 )
- SCALE = SCALE*HALF
- END IF
- *
- IF( UPPER ) THEN
- IF( J.GT.1 ) THEN
- *
- * Compute the update
- * x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
- *
- CALL SAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
- $ 1 )
- I = ISAMAX( J-1, X, 1 )
- XMAX = ABS( X( I ) )
- END IF
- ELSE
- IF( J.LT.N ) THEN
- *
- * Compute the update
- * x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
- *
- CALL SAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
- $ X( J+1 ), 1 )
- I = J + ISAMAX( N-J, X( J+1 ), 1 )
- XMAX = ABS( X( I ) )
- END IF
- END IF
- 100 CONTINUE
- *
- ELSE
- *
- * Solve A**T * x = b
- *
- DO 140 J = JFIRST, JLAST, JINC
- *
- * Compute x(j) = b(j) - sum A(k,j)*x(k).
- * k<>j
- *
- XJ = ABS( X( J ) )
- USCAL = TSCAL
- REC = ONE / MAX( XMAX, ONE )
- IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
- *
- * If x(j) could overflow, scale x by 1/(2*XMAX).
- *
- REC = REC*HALF
- IF( NOUNIT ) THEN
- TJJS = A( J, J )*TSCAL
- ELSE
- TJJS = TSCAL
- END IF
- TJJ = ABS( TJJS )
- IF( TJJ.GT.ONE ) THEN
- *
- * Divide by A(j,j) when scaling x if A(j,j) > 1.
- *
- REC = MIN( ONE, REC*TJJ )
- USCAL = USCAL / TJJS
- END IF
- IF( REC.LT.ONE ) THEN
- CALL SSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- END IF
- *
- SUMJ = ZERO
- IF( USCAL.EQ.ONE ) THEN
- *
- * If the scaling needed for A in the dot product is 1,
- * call SDOT to perform the dot product.
- *
- IF( UPPER ) THEN
- SUMJ = SDOT( J-1, A( 1, J ), 1, X, 1 )
- ELSE IF( J.LT.N ) THEN
- SUMJ = SDOT( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
- END IF
- ELSE
- *
- * Otherwise, use in-line code for the dot product.
- *
- IF( UPPER ) THEN
- DO 110 I = 1, J - 1
- SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
- 110 CONTINUE
- ELSE IF( J.LT.N ) THEN
- DO 120 I = J + 1, N
- SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
- 120 CONTINUE
- END IF
- END IF
- *
- IF( USCAL.EQ.TSCAL ) THEN
- *
- * Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
- * was not used to scale the dotproduct.
- *
- X( J ) = X( J ) - SUMJ
- XJ = ABS( X( J ) )
- IF( NOUNIT ) THEN
- TJJS = A( J, J )*TSCAL
- ELSE
- TJJS = TSCAL
- IF( TSCAL.EQ.ONE )
- $ GO TO 135
- END IF
- *
- * Compute x(j) = x(j) / A(j,j), scaling if necessary.
- *
- TJJ = ABS( TJJS )
- IF( TJJ.GT.SMLNUM ) THEN
- *
- * abs(A(j,j)) > SMLNUM:
- *
- IF( TJJ.LT.ONE ) THEN
- IF( XJ.GT.TJJ*BIGNUM ) THEN
- *
- * Scale X by 1/abs(x(j)).
- *
- REC = ONE / XJ
- CALL SSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- END IF
- X( J ) = X( J ) / TJJS
- ELSE IF( TJJ.GT.ZERO ) THEN
- *
- * 0 < abs(A(j,j)) <= SMLNUM:
- *
- IF( XJ.GT.TJJ*BIGNUM ) THEN
- *
- * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
- *
- REC = ( TJJ*BIGNUM ) / XJ
- CALL SSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- X( J ) = X( J ) / TJJS
- ELSE
- *
- * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
- * scale = 0, and compute a solution to A**T*x = 0.
- *
- DO 130 I = 1, N
- X( I ) = ZERO
- 130 CONTINUE
- X( J ) = ONE
- SCALE = ZERO
- XMAX = ZERO
- END IF
- 135 CONTINUE
- ELSE
- *
- * Compute x(j) := x(j) / A(j,j) - sumj if the dot
- * product has already been divided by 1/A(j,j).
- *
- X( J ) = X( J ) / TJJS - SUMJ
- END IF
- XMAX = MAX( XMAX, ABS( X( J ) ) )
- 140 CONTINUE
- END IF
- SCALE = SCALE / TSCAL
- END IF
- *
- * Scale the column norms by 1/TSCAL for return.
- *
- IF( TSCAL.NE.ONE ) THEN
- CALL SSCAL( N, ONE / TSCAL, CNORM, 1 )
- END IF
- *
- RETURN
- *
- * End of SLATRS
- *
- END
|