|
- *> \brief \b SLASSQ updates a sum of squares represented in scaled form.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLASSQ + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slassq.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slassq.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slassq.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLASSQ( N, X, INCX, SCALE, SUMSQ )
- *
- * .. Scalar Arguments ..
- * INTEGER INCX, N
- * REAL SCALE, SUMSQ
- * ..
- * .. Array Arguments ..
- * REAL X( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLASSQ returns the values scl and smsq such that
- *>
- *> ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
- *>
- *> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
- *> assumed to be non-negative and scl returns the value
- *>
- *> scl = max( scale, abs( x( i ) ) ).
- *>
- *> scale and sumsq must be supplied in SCALE and SUMSQ and
- *> scl and smsq are overwritten on SCALE and SUMSQ respectively.
- *>
- *> The routine makes only one pass through the vector x.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of elements to be used from the vector X.
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is REAL array, dimension (1+(N-1)*INCX)
- *> The vector for which a scaled sum of squares is computed.
- *> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> The increment between successive values of the vector X.
- *> INCX > 0.
- *> \endverbatim
- *>
- *> \param[in,out] SCALE
- *> \verbatim
- *> SCALE is REAL
- *> On entry, the value scale in the equation above.
- *> On exit, SCALE is overwritten with scl , the scaling factor
- *> for the sum of squares.
- *> \endverbatim
- *>
- *> \param[in,out] SUMSQ
- *> \verbatim
- *> SUMSQ is REAL
- *> On entry, the value sumsq in the equation above.
- *> On exit, SUMSQ is overwritten with smsq , the basic sum of
- *> squares from which scl has been factored out.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup OTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE SLASSQ( N, X, INCX, SCALE, SUMSQ )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INCX, N
- REAL SCALE, SUMSQ
- * ..
- * .. Array Arguments ..
- REAL X( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO
- PARAMETER ( ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER IX
- REAL ABSXI
- * ..
- * .. External Functions ..
- LOGICAL SISNAN
- EXTERNAL SISNAN
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS
- * ..
- * .. Executable Statements ..
- *
- IF( N.GT.0 ) THEN
- DO 10 IX = 1, 1 + ( N-1 )*INCX, INCX
- ABSXI = ABS( X( IX ) )
- IF( ABSXI.GT.ZERO.OR.SISNAN( ABSXI ) ) THEN
- IF( SCALE.LT.ABSXI ) THEN
- SUMSQ = 1 + SUMSQ*( SCALE / ABSXI )**2
- SCALE = ABSXI
- ELSE
- SUMSQ = SUMSQ + ( ABSXI / SCALE )**2
- END IF
- END IF
- 10 CONTINUE
- END IF
- RETURN
- *
- * End of SLASSQ
- *
- END
|