|
- *> \brief \b SLAG2 computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as necessary to avoid over-/underflow.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLAG2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slag2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slag2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slag2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1,
- * WR2, WI )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, LDB
- * REAL SAFMIN, SCALE1, SCALE2, WI, WR1, WR2
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), B( LDB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue
- *> problem A - w B, with scaling as necessary to avoid over-/underflow.
- *>
- *> The scaling factor "s" results in a modified eigenvalue equation
- *>
- *> s A - w B
- *>
- *> where s is a non-negative scaling factor chosen so that w, w B,
- *> and s A do not overflow and, if possible, do not underflow, either.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] A
- *> \verbatim
- *> A is REAL array, dimension (LDA, 2)
- *> On entry, the 2 x 2 matrix A. It is assumed that its 1-norm
- *> is less than 1/SAFMIN. Entries less than
- *> sqrt(SAFMIN)*norm(A) are subject to being treated as zero.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= 2.
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is REAL array, dimension (LDB, 2)
- *> On entry, the 2 x 2 upper triangular matrix B. It is
- *> assumed that the one-norm of B is less than 1/SAFMIN. The
- *> diagonals should be at least sqrt(SAFMIN) times the largest
- *> element of B (in absolute value); if a diagonal is smaller
- *> than that, then +/- sqrt(SAFMIN) will be used instead of
- *> that diagonal.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= 2.
- *> \endverbatim
- *>
- *> \param[in] SAFMIN
- *> \verbatim
- *> SAFMIN is REAL
- *> The smallest positive number s.t. 1/SAFMIN does not
- *> overflow. (This should always be SLAMCH('S') -- it is an
- *> argument in order to avoid having to call SLAMCH frequently.)
- *> \endverbatim
- *>
- *> \param[out] SCALE1
- *> \verbatim
- *> SCALE1 is REAL
- *> A scaling factor used to avoid over-/underflow in the
- *> eigenvalue equation which defines the first eigenvalue. If
- *> the eigenvalues are complex, then the eigenvalues are
- *> ( WR1 +/- WI i ) / SCALE1 (which may lie outside the
- *> exponent range of the machine), SCALE1=SCALE2, and SCALE1
- *> will always be positive. If the eigenvalues are real, then
- *> the first (real) eigenvalue is WR1 / SCALE1 , but this may
- *> overflow or underflow, and in fact, SCALE1 may be zero or
- *> less than the underflow threshold if the exact eigenvalue
- *> is sufficiently large.
- *> \endverbatim
- *>
- *> \param[out] SCALE2
- *> \verbatim
- *> SCALE2 is REAL
- *> A scaling factor used to avoid over-/underflow in the
- *> eigenvalue equation which defines the second eigenvalue. If
- *> the eigenvalues are complex, then SCALE2=SCALE1. If the
- *> eigenvalues are real, then the second (real) eigenvalue is
- *> WR2 / SCALE2 , but this may overflow or underflow, and in
- *> fact, SCALE2 may be zero or less than the underflow
- *> threshold if the exact eigenvalue is sufficiently large.
- *> \endverbatim
- *>
- *> \param[out] WR1
- *> \verbatim
- *> WR1 is REAL
- *> If the eigenvalue is real, then WR1 is SCALE1 times the
- *> eigenvalue closest to the (2,2) element of A B**(-1). If the
- *> eigenvalue is complex, then WR1=WR2 is SCALE1 times the real
- *> part of the eigenvalues.
- *> \endverbatim
- *>
- *> \param[out] WR2
- *> \verbatim
- *> WR2 is REAL
- *> If the eigenvalue is real, then WR2 is SCALE2 times the
- *> other eigenvalue. If the eigenvalue is complex, then
- *> WR1=WR2 is SCALE1 times the real part of the eigenvalues.
- *> \endverbatim
- *>
- *> \param[out] WI
- *> \verbatim
- *> WI is REAL
- *> If the eigenvalue is real, then WI is zero. If the
- *> eigenvalue is complex, then WI is SCALE1 times the imaginary
- *> part of the eigenvalues. WI will always be non-negative.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date June 2016
- *
- *> \ingroup realOTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE SLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1,
- $ WR2, WI )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * June 2016
- *
- * .. Scalar Arguments ..
- INTEGER LDA, LDB
- REAL SAFMIN, SCALE1, SCALE2, WI, WR1, WR2
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), B( LDB, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE, TWO
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
- REAL HALF
- PARAMETER ( HALF = ONE / TWO )
- REAL FUZZY1
- PARAMETER ( FUZZY1 = ONE+1.0E-5 )
- * ..
- * .. Local Scalars ..
- REAL A11, A12, A21, A22, ABI22, ANORM, AS11, AS12,
- $ AS22, ASCALE, B11, B12, B22, BINV11, BINV22,
- $ BMIN, BNORM, BSCALE, BSIZE, C1, C2, C3, C4, C5,
- $ DIFF, DISCR, PP, QQ, R, RTMAX, RTMIN, S1, S2,
- $ SAFMAX, SHIFT, SS, SUM, WABS, WBIG, WDET,
- $ WSCALE, WSIZE, WSMALL
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN, SIGN, SQRT
- * ..
- * .. Executable Statements ..
- *
- RTMIN = SQRT( SAFMIN )
- RTMAX = ONE / RTMIN
- SAFMAX = ONE / SAFMIN
- *
- * Scale A
- *
- ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
- $ ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
- ASCALE = ONE / ANORM
- A11 = ASCALE*A( 1, 1 )
- A21 = ASCALE*A( 2, 1 )
- A12 = ASCALE*A( 1, 2 )
- A22 = ASCALE*A( 2, 2 )
- *
- * Perturb B if necessary to insure non-singularity
- *
- B11 = B( 1, 1 )
- B12 = B( 1, 2 )
- B22 = B( 2, 2 )
- BMIN = RTMIN*MAX( ABS( B11 ), ABS( B12 ), ABS( B22 ), RTMIN )
- IF( ABS( B11 ).LT.BMIN )
- $ B11 = SIGN( BMIN, B11 )
- IF( ABS( B22 ).LT.BMIN )
- $ B22 = SIGN( BMIN, B22 )
- *
- * Scale B
- *
- BNORM = MAX( ABS( B11 ), ABS( B12 )+ABS( B22 ), SAFMIN )
- BSIZE = MAX( ABS( B11 ), ABS( B22 ) )
- BSCALE = ONE / BSIZE
- B11 = B11*BSCALE
- B12 = B12*BSCALE
- B22 = B22*BSCALE
- *
- * Compute larger eigenvalue by method described by C. van Loan
- *
- * ( AS is A shifted by -SHIFT*B )
- *
- BINV11 = ONE / B11
- BINV22 = ONE / B22
- S1 = A11*BINV11
- S2 = A22*BINV22
- IF( ABS( S1 ).LE.ABS( S2 ) ) THEN
- AS12 = A12 - S1*B12
- AS22 = A22 - S1*B22
- SS = A21*( BINV11*BINV22 )
- ABI22 = AS22*BINV22 - SS*B12
- PP = HALF*ABI22
- SHIFT = S1
- ELSE
- AS12 = A12 - S2*B12
- AS11 = A11 - S2*B11
- SS = A21*( BINV11*BINV22 )
- ABI22 = -SS*B12
- PP = HALF*( AS11*BINV11+ABI22 )
- SHIFT = S2
- END IF
- QQ = SS*AS12
- IF( ABS( PP*RTMIN ).GE.ONE ) THEN
- DISCR = ( RTMIN*PP )**2 + QQ*SAFMIN
- R = SQRT( ABS( DISCR ) )*RTMAX
- ELSE
- IF( PP**2+ABS( QQ ).LE.SAFMIN ) THEN
- DISCR = ( RTMAX*PP )**2 + QQ*SAFMAX
- R = SQRT( ABS( DISCR ) )*RTMIN
- ELSE
- DISCR = PP**2 + QQ
- R = SQRT( ABS( DISCR ) )
- END IF
- END IF
- *
- * Note: the test of R in the following IF is to cover the case when
- * DISCR is small and negative and is flushed to zero during
- * the calculation of R. On machines which have a consistent
- * flush-to-zero threshold and handle numbers above that
- * threshold correctly, it would not be necessary.
- *
- IF( DISCR.GE.ZERO .OR. R.EQ.ZERO ) THEN
- SUM = PP + SIGN( R, PP )
- DIFF = PP - SIGN( R, PP )
- WBIG = SHIFT + SUM
- *
- * Compute smaller eigenvalue
- *
- WSMALL = SHIFT + DIFF
- IF( HALF*ABS( WBIG ).GT.MAX( ABS( WSMALL ), SAFMIN ) ) THEN
- WDET = ( A11*A22-A12*A21 )*( BINV11*BINV22 )
- WSMALL = WDET / WBIG
- END IF
- *
- * Choose (real) eigenvalue closest to 2,2 element of A*B**(-1)
- * for WR1.
- *
- IF( PP.GT.ABI22 ) THEN
- WR1 = MIN( WBIG, WSMALL )
- WR2 = MAX( WBIG, WSMALL )
- ELSE
- WR1 = MAX( WBIG, WSMALL )
- WR2 = MIN( WBIG, WSMALL )
- END IF
- WI = ZERO
- ELSE
- *
- * Complex eigenvalues
- *
- WR1 = SHIFT + PP
- WR2 = WR1
- WI = R
- END IF
- *
- * Further scaling to avoid underflow and overflow in computing
- * SCALE1 and overflow in computing w*B.
- *
- * This scale factor (WSCALE) is bounded from above using C1 and C2,
- * and from below using C3 and C4.
- * C1 implements the condition s A must never overflow.
- * C2 implements the condition w B must never overflow.
- * C3, with C2,
- * implement the condition that s A - w B must never overflow.
- * C4 implements the condition s should not underflow.
- * C5 implements the condition max(s,|w|) should be at least 2.
- *
- C1 = BSIZE*( SAFMIN*MAX( ONE, ASCALE ) )
- C2 = SAFMIN*MAX( ONE, BNORM )
- C3 = BSIZE*SAFMIN
- IF( ASCALE.LE.ONE .AND. BSIZE.LE.ONE ) THEN
- C4 = MIN( ONE, ( ASCALE / SAFMIN )*BSIZE )
- ELSE
- C4 = ONE
- END IF
- IF( ASCALE.LE.ONE .OR. BSIZE.LE.ONE ) THEN
- C5 = MIN( ONE, ASCALE*BSIZE )
- ELSE
- C5 = ONE
- END IF
- *
- * Scale first eigenvalue
- *
- WABS = ABS( WR1 ) + ABS( WI )
- WSIZE = MAX( SAFMIN, C1, FUZZY1*( WABS*C2+C3 ),
- $ MIN( C4, HALF*MAX( WABS, C5 ) ) )
- IF( WSIZE.NE.ONE ) THEN
- WSCALE = ONE / WSIZE
- IF( WSIZE.GT.ONE ) THEN
- SCALE1 = ( MAX( ASCALE, BSIZE )*WSCALE )*
- $ MIN( ASCALE, BSIZE )
- ELSE
- SCALE1 = ( MIN( ASCALE, BSIZE )*WSCALE )*
- $ MAX( ASCALE, BSIZE )
- END IF
- WR1 = WR1*WSCALE
- IF( WI.NE.ZERO ) THEN
- WI = WI*WSCALE
- WR2 = WR1
- SCALE2 = SCALE1
- END IF
- ELSE
- SCALE1 = ASCALE*BSIZE
- SCALE2 = SCALE1
- END IF
- *
- * Scale second eigenvalue (if real)
- *
- IF( WI.EQ.ZERO ) THEN
- WSIZE = MAX( SAFMIN, C1, FUZZY1*( ABS( WR2 )*C2+C3 ),
- $ MIN( C4, HALF*MAX( ABS( WR2 ), C5 ) ) )
- IF( WSIZE.NE.ONE ) THEN
- WSCALE = ONE / WSIZE
- IF( WSIZE.GT.ONE ) THEN
- SCALE2 = ( MAX( ASCALE, BSIZE )*WSCALE )*
- $ MIN( ASCALE, BSIZE )
- ELSE
- SCALE2 = ( MIN( ASCALE, BSIZE )*WSCALE )*
- $ MAX( ASCALE, BSIZE )
- END IF
- WR2 = WR2*WSCALE
- ELSE
- SCALE2 = ASCALE*BSIZE
- END IF
- END IF
- *
- * End of SLAG2
- *
- RETURN
- END
|