|
- *> \brief \b SLA_GERPVGRW
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLA_GERPVGRW + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sla_gerpvgrw.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sla_gerpvgrw.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sla_gerpvgrw.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * REAL FUNCTION SLA_GERPVGRW( N, NCOLS, A, LDA, AF, LDAF )
- *
- * .. Scalar Arguments ..
- * INTEGER N, NCOLS, LDA, LDAF
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), AF( LDAF, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLA_GERPVGRW computes the reciprocal pivot growth factor
- *> norm(A)/norm(U). The "max absolute element" norm is used. If this is
- *> much less than 1, the stability of the LU factorization of the
- *> (equilibrated) matrix A could be poor. This also means that the
- *> solution X, estimated condition numbers, and error bounds could be
- *> unreliable.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of linear equations, i.e., the order of the
- *> matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NCOLS
- *> \verbatim
- *> NCOLS is INTEGER
- *> The number of columns of the matrix A. NCOLS >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the N-by-N matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] AF
- *> \verbatim
- *> AF is REAL array, dimension (LDAF,N)
- *> The factors L and U from the factorization
- *> A = P*L*U as computed by SGETRF.
- *> \endverbatim
- *>
- *> \param[in] LDAF
- *> \verbatim
- *> LDAF is INTEGER
- *> The leading dimension of the array AF. LDAF >= max(1,N).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup realGEcomputational
- *
- * =====================================================================
- REAL FUNCTION SLA_GERPVGRW( N, NCOLS, A, LDA, AF, LDAF )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER N, NCOLS, LDA, LDAF
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), AF( LDAF, * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- INTEGER I, J
- REAL AMAX, UMAX, RPVGRW
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- RPVGRW = 1.0
-
- DO J = 1, NCOLS
- AMAX = 0.0
- UMAX = 0.0
- DO I = 1, N
- AMAX = MAX( ABS( A( I, J ) ), AMAX )
- END DO
- DO I = 1, J
- UMAX = MAX( ABS( AF( I, J ) ), UMAX )
- END DO
- IF ( UMAX /= 0.0 ) THEN
- RPVGRW = MIN( AMAX / UMAX, RPVGRW )
- END IF
- END DO
- SLA_GERPVGRW = RPVGRW
- END
|