|
- *> \brief <b> SGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SGGEV + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggev.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggev.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggev.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
- * BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBVL, JOBVR
- * INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
- * $ B( LDB, * ), BETA( * ), VL( LDVL, * ),
- * $ VR( LDVR, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B)
- *> the generalized eigenvalues, and optionally, the left and/or right
- *> generalized eigenvectors.
- *>
- *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
- *> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
- *> singular. It is usually represented as the pair (alpha,beta), as
- *> there is a reasonable interpretation for beta=0, and even for both
- *> being zero.
- *>
- *> The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
- *> of (A,B) satisfies
- *>
- *> A * v(j) = lambda(j) * B * v(j).
- *>
- *> The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
- *> of (A,B) satisfies
- *>
- *> u(j)**H * A = lambda(j) * u(j)**H * B .
- *>
- *> where u(j)**H is the conjugate-transpose of u(j).
- *>
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBVL
- *> \verbatim
- *> JOBVL is CHARACTER*1
- *> = 'N': do not compute the left generalized eigenvectors;
- *> = 'V': compute the left generalized eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] JOBVR
- *> \verbatim
- *> JOBVR is CHARACTER*1
- *> = 'N': do not compute the right generalized eigenvectors;
- *> = 'V': compute the right generalized eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrices A, B, VL, and VR. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA, N)
- *> On entry, the matrix A in the pair (A,B).
- *> On exit, A has been overwritten.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is REAL array, dimension (LDB, N)
- *> On entry, the matrix B in the pair (A,B).
- *> On exit, B has been overwritten.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] ALPHAR
- *> \verbatim
- *> ALPHAR is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] ALPHAI
- *> \verbatim
- *> ALPHAI is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] BETA
- *> \verbatim
- *> BETA is REAL array, dimension (N)
- *> On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
- *> be the generalized eigenvalues. If ALPHAI(j) is zero, then
- *> the j-th eigenvalue is real; if positive, then the j-th and
- *> (j+1)-st eigenvalues are a complex conjugate pair, with
- *> ALPHAI(j+1) negative.
- *>
- *> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
- *> may easily over- or underflow, and BETA(j) may even be zero.
- *> Thus, the user should avoid naively computing the ratio
- *> alpha/beta. However, ALPHAR and ALPHAI will be always less
- *> than and usually comparable with norm(A) in magnitude, and
- *> BETA always less than and usually comparable with norm(B).
- *> \endverbatim
- *>
- *> \param[out] VL
- *> \verbatim
- *> VL is REAL array, dimension (LDVL,N)
- *> If JOBVL = 'V', the left eigenvectors u(j) are stored one
- *> after another in the columns of VL, in the same order as
- *> their eigenvalues. If the j-th eigenvalue is real, then
- *> u(j) = VL(:,j), the j-th column of VL. If the j-th and
- *> (j+1)-th eigenvalues form a complex conjugate pair, then
- *> u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
- *> Each eigenvector is scaled so the largest component has
- *> abs(real part)+abs(imag. part)=1.
- *> Not referenced if JOBVL = 'N'.
- *> \endverbatim
- *>
- *> \param[in] LDVL
- *> \verbatim
- *> LDVL is INTEGER
- *> The leading dimension of the matrix VL. LDVL >= 1, and
- *> if JOBVL = 'V', LDVL >= N.
- *> \endverbatim
- *>
- *> \param[out] VR
- *> \verbatim
- *> VR is REAL array, dimension (LDVR,N)
- *> If JOBVR = 'V', the right eigenvectors v(j) are stored one
- *> after another in the columns of VR, in the same order as
- *> their eigenvalues. If the j-th eigenvalue is real, then
- *> v(j) = VR(:,j), the j-th column of VR. If the j-th and
- *> (j+1)-th eigenvalues form a complex conjugate pair, then
- *> v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
- *> Each eigenvector is scaled so the largest component has
- *> abs(real part)+abs(imag. part)=1.
- *> Not referenced if JOBVR = 'N'.
- *> \endverbatim
- *>
- *> \param[in] LDVR
- *> \verbatim
- *> LDVR is INTEGER
- *> The leading dimension of the matrix VR. LDVR >= 1, and
- *> if JOBVR = 'V', LDVR >= N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,8*N).
- *> For good performance, LWORK must generally be larger.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> = 1,...,N:
- *> The QZ iteration failed. No eigenvectors have been
- *> calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
- *> should be correct for j=INFO+1,...,N.
- *> > N: =N+1: other than QZ iteration failed in SHGEQZ.
- *> =N+2: error return from STGEVC.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date April 2012
- *
- *> \ingroup realGEeigen
- *
- * =====================================================================
- SUBROUTINE SGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
- $ BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * April 2012
- *
- * .. Scalar Arguments ..
- CHARACTER JOBVL, JOBVR
- INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
- $ B( LDB, * ), BETA( * ), VL( LDVL, * ),
- $ VR( LDVR, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
- CHARACTER CHTEMP
- INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
- $ IN, IRIGHT, IROWS, ITAU, IWRK, JC, JR, MAXWRK,
- $ MINWRK
- REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
- $ SMLNUM, TEMP
- * ..
- * .. Local Arrays ..
- LOGICAL LDUMMA( 1 )
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEQRF, SGGBAK, SGGBAL, SGGHRD, SHGEQZ, SLABAD,
- $ SLACPY, SLASCL, SLASET, SORGQR, SORMQR, STGEVC,
- $ XERBLA
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- REAL SLAMCH, SLANGE
- EXTERNAL LSAME, ILAENV, SLAMCH, SLANGE
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Decode the input arguments
- *
- IF( LSAME( JOBVL, 'N' ) ) THEN
- IJOBVL = 1
- ILVL = .FALSE.
- ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
- IJOBVL = 2
- ILVL = .TRUE.
- ELSE
- IJOBVL = -1
- ILVL = .FALSE.
- END IF
- *
- IF( LSAME( JOBVR, 'N' ) ) THEN
- IJOBVR = 1
- ILVR = .FALSE.
- ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
- IJOBVR = 2
- ILVR = .TRUE.
- ELSE
- IJOBVR = -1
- ILVR = .FALSE.
- END IF
- ILV = ILVL .OR. ILVR
- *
- * Test the input arguments
- *
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- IF( IJOBVL.LE.0 ) THEN
- INFO = -1
- ELSE IF( IJOBVR.LE.0 ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -7
- ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
- INFO = -12
- ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
- INFO = -14
- END IF
- *
- * Compute workspace
- * (Note: Comments in the code beginning "Workspace:" describe the
- * minimal amount of workspace needed at that point in the code,
- * as well as the preferred amount for good performance.
- * NB refers to the optimal block size for the immediately
- * following subroutine, as returned by ILAENV. The workspace is
- * computed assuming ILO = 1 and IHI = N, the worst case.)
- *
- IF( INFO.EQ.0 ) THEN
- MINWRK = MAX( 1, 8*N )
- MAXWRK = MAX( 1, N*( 7 +
- $ ILAENV( 1, 'SGEQRF', ' ', N, 1, N, 0 ) ) )
- MAXWRK = MAX( MAXWRK, N*( 7 +
- $ ILAENV( 1, 'SORMQR', ' ', N, 1, N, 0 ) ) )
- IF( ILVL ) THEN
- MAXWRK = MAX( MAXWRK, N*( 7 +
- $ ILAENV( 1, 'SORGQR', ' ', N, 1, N, -1 ) ) )
- END IF
- WORK( 1 ) = MAXWRK
- *
- IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
- $ INFO = -16
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SGGEV ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Get machine constants
- *
- EPS = SLAMCH( 'P' )
- SMLNUM = SLAMCH( 'S' )
- BIGNUM = ONE / SMLNUM
- CALL SLABAD( SMLNUM, BIGNUM )
- SMLNUM = SQRT( SMLNUM ) / EPS
- BIGNUM = ONE / SMLNUM
- *
- * Scale A if max element outside range [SMLNUM,BIGNUM]
- *
- ANRM = SLANGE( 'M', N, N, A, LDA, WORK )
- ILASCL = .FALSE.
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- ANRMTO = SMLNUM
- ILASCL = .TRUE.
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- ANRMTO = BIGNUM
- ILASCL = .TRUE.
- END IF
- IF( ILASCL )
- $ CALL SLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
- *
- * Scale B if max element outside range [SMLNUM,BIGNUM]
- *
- BNRM = SLANGE( 'M', N, N, B, LDB, WORK )
- ILBSCL = .FALSE.
- IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
- BNRMTO = SMLNUM
- ILBSCL = .TRUE.
- ELSE IF( BNRM.GT.BIGNUM ) THEN
- BNRMTO = BIGNUM
- ILBSCL = .TRUE.
- END IF
- IF( ILBSCL )
- $ CALL SLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
- *
- * Permute the matrices A, B to isolate eigenvalues if possible
- * (Workspace: need 6*N)
- *
- ILEFT = 1
- IRIGHT = N + 1
- IWRK = IRIGHT + N
- CALL SGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
- $ WORK( IRIGHT ), WORK( IWRK ), IERR )
- *
- * Reduce B to triangular form (QR decomposition of B)
- * (Workspace: need N, prefer N*NB)
- *
- IROWS = IHI + 1 - ILO
- IF( ILV ) THEN
- ICOLS = N + 1 - ILO
- ELSE
- ICOLS = IROWS
- END IF
- ITAU = IWRK
- IWRK = ITAU + IROWS
- CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
- $ WORK( IWRK ), LWORK+1-IWRK, IERR )
- *
- * Apply the orthogonal transformation to matrix A
- * (Workspace: need N, prefer N*NB)
- *
- CALL SORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
- $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
- $ LWORK+1-IWRK, IERR )
- *
- * Initialize VL
- * (Workspace: need N, prefer N*NB)
- *
- IF( ILVL ) THEN
- CALL SLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
- IF( IROWS.GT.1 ) THEN
- CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
- $ VL( ILO+1, ILO ), LDVL )
- END IF
- CALL SORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
- $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
- END IF
- *
- * Initialize VR
- *
- IF( ILVR )
- $ CALL SLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
- *
- * Reduce to generalized Hessenberg form
- * (Workspace: none needed)
- *
- IF( ILV ) THEN
- *
- * Eigenvectors requested -- work on whole matrix.
- *
- CALL SGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
- $ LDVL, VR, LDVR, IERR )
- ELSE
- CALL SGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
- $ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
- END IF
- *
- * Perform QZ algorithm (Compute eigenvalues, and optionally, the
- * Schur forms and Schur vectors)
- * (Workspace: need N)
- *
- IWRK = ITAU
- IF( ILV ) THEN
- CHTEMP = 'S'
- ELSE
- CHTEMP = 'E'
- END IF
- CALL SHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
- $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
- $ WORK( IWRK ), LWORK+1-IWRK, IERR )
- IF( IERR.NE.0 ) THEN
- IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
- INFO = IERR
- ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
- INFO = IERR - N
- ELSE
- INFO = N + 1
- END IF
- GO TO 110
- END IF
- *
- * Compute Eigenvectors
- * (Workspace: need 6*N)
- *
- IF( ILV ) THEN
- IF( ILVL ) THEN
- IF( ILVR ) THEN
- CHTEMP = 'B'
- ELSE
- CHTEMP = 'L'
- END IF
- ELSE
- CHTEMP = 'R'
- END IF
- CALL STGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
- $ VR, LDVR, N, IN, WORK( IWRK ), IERR )
- IF( IERR.NE.0 ) THEN
- INFO = N + 2
- GO TO 110
- END IF
- *
- * Undo balancing on VL and VR and normalization
- * (Workspace: none needed)
- *
- IF( ILVL ) THEN
- CALL SGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
- $ WORK( IRIGHT ), N, VL, LDVL, IERR )
- DO 50 JC = 1, N
- IF( ALPHAI( JC ).LT.ZERO )
- $ GO TO 50
- TEMP = ZERO
- IF( ALPHAI( JC ).EQ.ZERO ) THEN
- DO 10 JR = 1, N
- TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
- 10 CONTINUE
- ELSE
- DO 20 JR = 1, N
- TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
- $ ABS( VL( JR, JC+1 ) ) )
- 20 CONTINUE
- END IF
- IF( TEMP.LT.SMLNUM )
- $ GO TO 50
- TEMP = ONE / TEMP
- IF( ALPHAI( JC ).EQ.ZERO ) THEN
- DO 30 JR = 1, N
- VL( JR, JC ) = VL( JR, JC )*TEMP
- 30 CONTINUE
- ELSE
- DO 40 JR = 1, N
- VL( JR, JC ) = VL( JR, JC )*TEMP
- VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
- 40 CONTINUE
- END IF
- 50 CONTINUE
- END IF
- IF( ILVR ) THEN
- CALL SGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
- $ WORK( IRIGHT ), N, VR, LDVR, IERR )
- DO 100 JC = 1, N
- IF( ALPHAI( JC ).LT.ZERO )
- $ GO TO 100
- TEMP = ZERO
- IF( ALPHAI( JC ).EQ.ZERO ) THEN
- DO 60 JR = 1, N
- TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
- 60 CONTINUE
- ELSE
- DO 70 JR = 1, N
- TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
- $ ABS( VR( JR, JC+1 ) ) )
- 70 CONTINUE
- END IF
- IF( TEMP.LT.SMLNUM )
- $ GO TO 100
- TEMP = ONE / TEMP
- IF( ALPHAI( JC ).EQ.ZERO ) THEN
- DO 80 JR = 1, N
- VR( JR, JC ) = VR( JR, JC )*TEMP
- 80 CONTINUE
- ELSE
- DO 90 JR = 1, N
- VR( JR, JC ) = VR( JR, JC )*TEMP
- VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
- 90 CONTINUE
- END IF
- 100 CONTINUE
- END IF
- *
- * End of eigenvector calculation
- *
- END IF
- *
- * Undo scaling if necessary
- *
- 110 CONTINUE
- *
- IF( ILASCL ) THEN
- CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
- CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
- END IF
- *
- IF( ILBSCL ) THEN
- CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
- END IF
- *
- WORK( 1 ) = MAXWRK
- RETURN
- *
- * End of SGGEV
- *
- END
|