|
- *> \brief \b SGEQRT2 computes a QR factorization of a general real or complex matrix using the compact WY representation of Q.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SGEQRT2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeqrt2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeqrt2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeqrt2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGEQRT2( M, N, A, LDA, T, LDT, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LDT, M, N
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), T( LDT, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SGEQRT2 computes a QR factorization of a real M-by-N matrix A,
- *> using the compact WY representation of Q.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= N.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the real M-by-N matrix A. On exit, the elements on and
- *> above the diagonal contain the N-by-N upper triangular matrix R; the
- *> elements below the diagonal are the columns of V. See below for
- *> further details.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] T
- *> \verbatim
- *> T is REAL array, dimension (LDT,N)
- *> The N-by-N upper triangular factor of the block reflector.
- *> The elements on and above the diagonal contain the block
- *> reflector T; the elements below the diagonal are not used.
- *> See below for further details.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the array T. LDT >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup realGEcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The matrix V stores the elementary reflectors H(i) in the i-th column
- *> below the diagonal. For example, if M=5 and N=3, the matrix V is
- *>
- *> V = ( 1 )
- *> ( v1 1 )
- *> ( v1 v2 1 )
- *> ( v1 v2 v3 )
- *> ( v1 v2 v3 )
- *>
- *> where the vi's represent the vectors which define H(i), which are returned
- *> in the matrix A. The 1's along the diagonal of V are not stored in A. The
- *> block reflector H is then given by
- *>
- *> H = I - V * T * V**T
- *>
- *> where V**T is the transpose of V.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE SGEQRT2( M, N, A, LDA, T, LDT, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LDT, M, N
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), T( LDT, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER( ONE = 1.0, ZERO = 0.0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, K
- REAL AII, ALPHA
- * ..
- * .. External Subroutines ..
- EXTERNAL SLARFG, SGEMV, SGER, STRMV, XERBLA
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
- INFO = -6
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SGEQRT2', -INFO )
- RETURN
- END IF
- *
- K = MIN( M, N )
- *
- DO I = 1, K
- *
- * Generate elem. refl. H(i) to annihilate A(i+1:m,i), tau(I) -> T(I,1)
- *
- CALL SLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
- $ T( I, 1 ) )
- IF( I.LT.N ) THEN
- *
- * Apply H(i) to A(I:M,I+1:N) from the left
- *
- AII = A( I, I )
- A( I, I ) = ONE
- *
- * W(1:N-I) := A(I:M,I+1:N)^H * A(I:M,I) [W = T(:,N)]
- *
- CALL SGEMV( 'T',M-I+1, N-I, ONE, A( I, I+1 ), LDA,
- $ A( I, I ), 1, ZERO, T( 1, N ), 1 )
- *
- * A(I:M,I+1:N) = A(I:m,I+1:N) + alpha*A(I:M,I)*W(1:N-1)^H
- *
- ALPHA = -(T( I, 1 ))
- CALL SGER( M-I+1, N-I, ALPHA, A( I, I ), 1,
- $ T( 1, N ), 1, A( I, I+1 ), LDA )
- A( I, I ) = AII
- END IF
- END DO
- *
- DO I = 2, N
- AII = A( I, I )
- A( I, I ) = ONE
- *
- * T(1:I-1,I) := alpha * A(I:M,1:I-1)**T * A(I:M,I)
- *
- ALPHA = -T( I, 1 )
- CALL SGEMV( 'T', M-I+1, I-1, ALPHA, A( I, 1 ), LDA,
- $ A( I, I ), 1, ZERO, T( 1, I ), 1 )
- A( I, I ) = AII
- *
- * T(1:I-1,I) := T(1:I-1,1:I-1) * T(1:I-1,I)
- *
- CALL STRMV( 'U', 'N', 'N', I-1, T, LDT, T( 1, I ), 1 )
- *
- * T(I,I) = tau(I)
- *
- T( I, I ) = T( I, 1 )
- T( I, 1) = ZERO
- END DO
-
- *
- * End of SGEQRT2
- *
- END
|