|
- *> \brief <b> SGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SGEES + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgees.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgees.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgees.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
- * VS, LDVS, WORK, LWORK, BWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBVS, SORT
- * INTEGER INFO, LDA, LDVS, LWORK, N, SDIM
- * ..
- * .. Array Arguments ..
- * LOGICAL BWORK( * )
- * REAL A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
- * $ WR( * )
- * ..
- * .. Function Arguments ..
- * LOGICAL SELECT
- * EXTERNAL SELECT
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SGEES computes for an N-by-N real nonsymmetric matrix A, the
- *> eigenvalues, the real Schur form T, and, optionally, the matrix of
- *> Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).
- *>
- *> Optionally, it also orders the eigenvalues on the diagonal of the
- *> real Schur form so that selected eigenvalues are at the top left.
- *> The leading columns of Z then form an orthonormal basis for the
- *> invariant subspace corresponding to the selected eigenvalues.
- *>
- *> A matrix is in real Schur form if it is upper quasi-triangular with
- *> 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the
- *> form
- *> [ a b ]
- *> [ c a ]
- *>
- *> where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBVS
- *> \verbatim
- *> JOBVS is CHARACTER*1
- *> = 'N': Schur vectors are not computed;
- *> = 'V': Schur vectors are computed.
- *> \endverbatim
- *>
- *> \param[in] SORT
- *> \verbatim
- *> SORT is CHARACTER*1
- *> Specifies whether or not to order the eigenvalues on the
- *> diagonal of the Schur form.
- *> = 'N': Eigenvalues are not ordered;
- *> = 'S': Eigenvalues are ordered (see SELECT).
- *> \endverbatim
- *>
- *> \param[in] SELECT
- *> \verbatim
- *> SELECT is a LOGICAL FUNCTION of two REAL arguments
- *> SELECT must be declared EXTERNAL in the calling subroutine.
- *> If SORT = 'S', SELECT is used to select eigenvalues to sort
- *> to the top left of the Schur form.
- *> If SORT = 'N', SELECT is not referenced.
- *> An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
- *> SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex
- *> conjugate pair of eigenvalues is selected, then both complex
- *> eigenvalues are selected.
- *> Note that a selected complex eigenvalue may no longer
- *> satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
- *> ordering may change the value of complex eigenvalues
- *> (especially if the eigenvalue is ill-conditioned); in this
- *> case INFO is set to N+2 (see INFO below).
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the N-by-N matrix A.
- *> On exit, A has been overwritten by its real Schur form T.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] SDIM
- *> \verbatim
- *> SDIM is INTEGER
- *> If SORT = 'N', SDIM = 0.
- *> If SORT = 'S', SDIM = number of eigenvalues (after sorting)
- *> for which SELECT is true. (Complex conjugate
- *> pairs for which SELECT is true for either
- *> eigenvalue count as 2.)
- *> \endverbatim
- *>
- *> \param[out] WR
- *> \verbatim
- *> WR is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] WI
- *> \verbatim
- *> WI is REAL array, dimension (N)
- *> WR and WI contain the real and imaginary parts,
- *> respectively, of the computed eigenvalues in the same order
- *> that they appear on the diagonal of the output Schur form T.
- *> Complex conjugate pairs of eigenvalues will appear
- *> consecutively with the eigenvalue having the positive
- *> imaginary part first.
- *> \endverbatim
- *>
- *> \param[out] VS
- *> \verbatim
- *> VS is REAL array, dimension (LDVS,N)
- *> If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
- *> vectors.
- *> If JOBVS = 'N', VS is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDVS
- *> \verbatim
- *> LDVS is INTEGER
- *> The leading dimension of the array VS. LDVS >= 1; if
- *> JOBVS = 'V', LDVS >= N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) contains the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,3*N).
- *> For good performance, LWORK must generally be larger.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] BWORK
- *> \verbatim
- *> BWORK is LOGICAL array, dimension (N)
- *> Not referenced if SORT = 'N'.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: if INFO = i, and i is
- *> <= N: the QR algorithm failed to compute all the
- *> eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
- *> contain those eigenvalues which have converged; if
- *> JOBVS = 'V', VS contains the matrix which reduces A
- *> to its partially converged Schur form.
- *> = N+1: the eigenvalues could not be reordered because some
- *> eigenvalues were too close to separate (the problem
- *> is very ill-conditioned);
- *> = N+2: after reordering, roundoff changed values of some
- *> complex eigenvalues so that leading eigenvalues in
- *> the Schur form no longer satisfy SELECT=.TRUE. This
- *> could also be caused by underflow due to scaling.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date June 2017
- *
- *> \ingroup realGEeigen
- *
- * =====================================================================
- SUBROUTINE SGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
- $ VS, LDVS, WORK, LWORK, BWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.7.1) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * June 2017
- *
- * .. Scalar Arguments ..
- CHARACTER JOBVS, SORT
- INTEGER INFO, LDA, LDVS, LWORK, N, SDIM
- * ..
- * .. Array Arguments ..
- LOGICAL BWORK( * )
- REAL A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
- $ WR( * )
- * ..
- * .. Function Arguments ..
- LOGICAL SELECT
- EXTERNAL SELECT
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
- * ..
- * .. Local Scalars ..
- LOGICAL CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTST,
- $ WANTVS
- INTEGER HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
- $ IHI, ILO, INXT, IP, ITAU, IWRK, MAXWRK, MINWRK
- REAL ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
- * ..
- * .. Local Arrays ..
- INTEGER IDUM( 1 )
- REAL DUM( 1 )
- * ..
- * .. External Subroutines ..
- EXTERNAL SCOPY, SGEBAK, SGEBAL, SGEHRD, SHSEQR, SLABAD,
- $ SLACPY, SLASCL, SORGHR, SSWAP, STRSEN, XERBLA
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- REAL SLAMCH, SLANGE
- EXTERNAL LSAME, ILAENV, SLAMCH, SLANGE
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- WANTVS = LSAME( JOBVS, 'V' )
- WANTST = LSAME( SORT, 'S' )
- IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
- INFO = -11
- END IF
- *
- * Compute workspace
- * (Note: Comments in the code beginning "Workspace:" describe the
- * minimal amount of workspace needed at that point in the code,
- * as well as the preferred amount for good performance.
- * NB refers to the optimal block size for the immediately
- * following subroutine, as returned by ILAENV.
- * HSWORK refers to the workspace preferred by SHSEQR, as
- * calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
- * the worst case.)
- *
- IF( INFO.EQ.0 ) THEN
- IF( N.EQ.0 ) THEN
- MINWRK = 1
- MAXWRK = 1
- ELSE
- MAXWRK = 2*N + N*ILAENV( 1, 'SGEHRD', ' ', N, 1, N, 0 )
- MINWRK = 3*N
- *
- CALL SHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
- $ WORK, -1, IEVAL )
- HSWORK = WORK( 1 )
- *
- IF( .NOT.WANTVS ) THEN
- MAXWRK = MAX( MAXWRK, N + HSWORK )
- ELSE
- MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
- $ 'SORGHR', ' ', N, 1, N, -1 ) )
- MAXWRK = MAX( MAXWRK, N + HSWORK )
- END IF
- END IF
- WORK( 1 ) = MAXWRK
- *
- IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
- INFO = -13
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SGEES ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 ) THEN
- SDIM = 0
- RETURN
- END IF
- *
- * Get machine constants
- *
- EPS = SLAMCH( 'P' )
- SMLNUM = SLAMCH( 'S' )
- BIGNUM = ONE / SMLNUM
- CALL SLABAD( SMLNUM, BIGNUM )
- SMLNUM = SQRT( SMLNUM ) / EPS
- BIGNUM = ONE / SMLNUM
- *
- * Scale A if max element outside range [SMLNUM,BIGNUM]
- *
- ANRM = SLANGE( 'M', N, N, A, LDA, DUM )
- SCALEA = .FALSE.
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- SCALEA = .TRUE.
- CSCALE = SMLNUM
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- SCALEA = .TRUE.
- CSCALE = BIGNUM
- END IF
- IF( SCALEA )
- $ CALL SLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
- *
- * Permute the matrix to make it more nearly triangular
- * (Workspace: need N)
- *
- IBAL = 1
- CALL SGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
- *
- * Reduce to upper Hessenberg form
- * (Workspace: need 3*N, prefer 2*N+N*NB)
- *
- ITAU = N + IBAL
- IWRK = N + ITAU
- CALL SGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
- $ LWORK-IWRK+1, IERR )
- *
- IF( WANTVS ) THEN
- *
- * Copy Householder vectors to VS
- *
- CALL SLACPY( 'L', N, N, A, LDA, VS, LDVS )
- *
- * Generate orthogonal matrix in VS
- * (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- *
- CALL SORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
- $ LWORK-IWRK+1, IERR )
- END IF
- *
- SDIM = 0
- *
- * Perform QR iteration, accumulating Schur vectors in VS if desired
- * (Workspace: need N+1, prefer N+HSWORK (see comments) )
- *
- IWRK = ITAU
- CALL SHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
- $ WORK( IWRK ), LWORK-IWRK+1, IEVAL )
- IF( IEVAL.GT.0 )
- $ INFO = IEVAL
- *
- * Sort eigenvalues if desired
- *
- IF( WANTST .AND. INFO.EQ.0 ) THEN
- IF( SCALEA ) THEN
- CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
- CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
- END IF
- DO 10 I = 1, N
- BWORK( I ) = SELECT( WR( I ), WI( I ) )
- 10 CONTINUE
- *
- * Reorder eigenvalues and transform Schur vectors
- * (Workspace: none needed)
- *
- CALL STRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
- $ SDIM, S, SEP, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
- $ ICOND )
- IF( ICOND.GT.0 )
- $ INFO = N + ICOND
- END IF
- *
- IF( WANTVS ) THEN
- *
- * Undo balancing
- * (Workspace: need N)
- *
- CALL SGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
- $ IERR )
- END IF
- *
- IF( SCALEA ) THEN
- *
- * Undo scaling for the Schur form of A
- *
- CALL SLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
- CALL SCOPY( N, A, LDA+1, WR, 1 )
- IF( CSCALE.EQ.SMLNUM ) THEN
- *
- * If scaling back towards underflow, adjust WI if an
- * offdiagonal element of a 2-by-2 block in the Schur form
- * underflows.
- *
- IF( IEVAL.GT.0 ) THEN
- I1 = IEVAL + 1
- I2 = IHI - 1
- CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI,
- $ MAX( ILO-1, 1 ), IERR )
- ELSE IF( WANTST ) THEN
- I1 = 1
- I2 = N - 1
- ELSE
- I1 = ILO
- I2 = IHI - 1
- END IF
- INXT = I1 - 1
- DO 20 I = I1, I2
- IF( I.LT.INXT )
- $ GO TO 20
- IF( WI( I ).EQ.ZERO ) THEN
- INXT = I + 1
- ELSE
- IF( A( I+1, I ).EQ.ZERO ) THEN
- WI( I ) = ZERO
- WI( I+1 ) = ZERO
- ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
- $ ZERO ) THEN
- WI( I ) = ZERO
- WI( I+1 ) = ZERO
- IF( I.GT.1 )
- $ CALL SSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
- IF( N.GT.I+1 )
- $ CALL SSWAP( N-I-1, A( I, I+2 ), LDA,
- $ A( I+1, I+2 ), LDA )
- IF( WANTVS ) THEN
- CALL SSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
- END IF
- A( I, I+1 ) = A( I+1, I )
- A( I+1, I ) = ZERO
- END IF
- INXT = I + 2
- END IF
- 20 CONTINUE
- END IF
- *
- * Undo scaling for the imaginary part of the eigenvalues
- *
- CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
- $ WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
- END IF
- *
- IF( WANTST .AND. INFO.EQ.0 ) THEN
- *
- * Check if reordering successful
- *
- LASTSL = .TRUE.
- LST2SL = .TRUE.
- SDIM = 0
- IP = 0
- DO 30 I = 1, N
- CURSL = SELECT( WR( I ), WI( I ) )
- IF( WI( I ).EQ.ZERO ) THEN
- IF( CURSL )
- $ SDIM = SDIM + 1
- IP = 0
- IF( CURSL .AND. .NOT.LASTSL )
- $ INFO = N + 2
- ELSE
- IF( IP.EQ.1 ) THEN
- *
- * Last eigenvalue of conjugate pair
- *
- CURSL = CURSL .OR. LASTSL
- LASTSL = CURSL
- IF( CURSL )
- $ SDIM = SDIM + 2
- IP = -1
- IF( CURSL .AND. .NOT.LST2SL )
- $ INFO = N + 2
- ELSE
- *
- * First eigenvalue of conjugate pair
- *
- IP = 1
- END IF
- END IF
- LST2SL = LASTSL
- LASTSL = CURSL
- 30 CONTINUE
- END IF
- *
- WORK( 1 ) = MAXWRK
- RETURN
- *
- * End of SGEES
- *
- END
|