|
- *> \brief <b> SGBSVXX computes the solution to system of linear equations A * X = B for GB matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SGBSVXX + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgbsvxx.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgbsvxx.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgbsvxx.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGBSVXX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
- * LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
- * RCOND, RPVGRW, BERR, N_ERR_BNDS,
- * ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
- * WORK, IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER EQUED, FACT, TRANS
- * INTEGER INFO, LDAB, LDAFB, LDB, LDX, N, NRHS, NPARAMS,
- * $ N_ERR_BNDS
- * REAL RCOND, RPVGRW
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * ), IWORK( * )
- * REAL AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
- * $ X( LDX , * ),WORK( * )
- * REAL R( * ), C( * ), PARAMS( * ), BERR( * ),
- * $ ERR_BNDS_NORM( NRHS, * ),
- * $ ERR_BNDS_COMP( NRHS, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SGBSVXX uses the LU factorization to compute the solution to a
- *> real system of linear equations A * X = B, where A is an
- *> N-by-N matrix and X and B are N-by-NRHS matrices.
- *>
- *> If requested, both normwise and maximum componentwise error bounds
- *> are returned. SGBSVXX will return a solution with a tiny
- *> guaranteed error (O(eps) where eps is the working machine
- *> precision) unless the matrix is very ill-conditioned, in which
- *> case a warning is returned. Relevant condition numbers also are
- *> calculated and returned.
- *>
- *> SGBSVXX accepts user-provided factorizations and equilibration
- *> factors; see the definitions of the FACT and EQUED options.
- *> Solving with refinement and using a factorization from a previous
- *> SGBSVXX call will also produce a solution with either O(eps)
- *> errors or warnings, but we cannot make that claim for general
- *> user-provided factorizations and equilibration factors if they
- *> differ from what SGBSVXX would itself produce.
- *> \endverbatim
- *
- *> \par Description:
- * =================
- *>
- *> \verbatim
- *>
- *> The following steps are performed:
- *>
- *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
- *> the system:
- *>
- *> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
- *> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
- *> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
- *>
- *> Whether or not the system will be equilibrated depends on the
- *> scaling of the matrix A, but if equilibration is used, A is
- *> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
- *> or diag(C)*B (if TRANS = 'T' or 'C').
- *>
- *> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor
- *> the matrix A (after equilibration if FACT = 'E') as
- *>
- *> A = P * L * U,
- *>
- *> where P is a permutation matrix, L is a unit lower triangular
- *> matrix, and U is upper triangular.
- *>
- *> 3. If some U(i,i)=0, so that U is exactly singular, then the
- *> routine returns with INFO = i. Otherwise, the factored form of A
- *> is used to estimate the condition number of the matrix A (see
- *> argument RCOND). If the reciprocal of the condition number is less
- *> than machine precision, the routine still goes on to solve for X
- *> and compute error bounds as described below.
- *>
- *> 4. The system of equations is solved for X using the factored form
- *> of A.
- *>
- *> 5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
- *> the routine will use iterative refinement to try to get a small
- *> error and error bounds. Refinement calculates the residual to at
- *> least twice the working precision.
- *>
- *> 6. If equilibration was used, the matrix X is premultiplied by
- *> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
- *> that it solves the original system before equilibration.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \verbatim
- *> Some optional parameters are bundled in the PARAMS array. These
- *> settings determine how refinement is performed, but often the
- *> defaults are acceptable. If the defaults are acceptable, users
- *> can pass NPARAMS = 0 which prevents the source code from accessing
- *> the PARAMS argument.
- *> \endverbatim
- *>
- *> \param[in] FACT
- *> \verbatim
- *> FACT is CHARACTER*1
- *> Specifies whether or not the factored form of the matrix A is
- *> supplied on entry, and if not, whether the matrix A should be
- *> equilibrated before it is factored.
- *> = 'F': On entry, AF and IPIV contain the factored form of A.
- *> If EQUED is not 'N', the matrix A has been
- *> equilibrated with scaling factors given by R and C.
- *> A, AF, and IPIV are not modified.
- *> = 'N': The matrix A will be copied to AF and factored.
- *> = 'E': The matrix A will be equilibrated if necessary, then
- *> copied to AF and factored.
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the form of the system of equations:
- *> = 'N': A * X = B (No transpose)
- *> = 'T': A**T * X = B (Transpose)
- *> = 'C': A**H * X = B (Conjugate Transpose = Transpose)
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of linear equations, i.e., the order of the
- *> matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KL
- *> \verbatim
- *> KL is INTEGER
- *> The number of subdiagonals within the band of A. KL >= 0.
- *> \endverbatim
- *>
- *> \param[in] KU
- *> \verbatim
- *> KU is INTEGER
- *> The number of superdiagonals within the band of A. KU >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices B and X. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AB
- *> \verbatim
- *> AB is REAL array, dimension (LDAB,N)
- *> On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
- *> The j-th column of A is stored in the j-th column of the
- *> array AB as follows:
- *> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
- *>
- *> If FACT = 'F' and EQUED is not 'N', then AB must have been
- *> equilibrated by the scaling factors in R and/or C. AB is not
- *> modified if FACT = 'F' or 'N', or if FACT = 'E' and
- *> EQUED = 'N' on exit.
- *>
- *> On exit, if EQUED .ne. 'N', A is scaled as follows:
- *> EQUED = 'R': A := diag(R) * A
- *> EQUED = 'C': A := A * diag(C)
- *> EQUED = 'B': A := diag(R) * A * diag(C).
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KL+KU+1.
- *> \endverbatim
- *>
- *> \param[in,out] AFB
- *> \verbatim
- *> AFB is REAL array, dimension (LDAFB,N)
- *> If FACT = 'F', then AFB is an input argument and on entry
- *> contains details of the LU factorization of the band matrix
- *> A, as computed by SGBTRF. U is stored as an upper triangular
- *> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
- *> and the multipliers used during the factorization are stored
- *> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
- *> the factored form of the equilibrated matrix A.
- *>
- *> If FACT = 'N', then AF is an output argument and on exit
- *> returns the factors L and U from the factorization A = P*L*U
- *> of the original matrix A.
- *>
- *> If FACT = 'E', then AF is an output argument and on exit
- *> returns the factors L and U from the factorization A = P*L*U
- *> of the equilibrated matrix A (see the description of A for
- *> the form of the equilibrated matrix).
- *> \endverbatim
- *>
- *> \param[in] LDAFB
- *> \verbatim
- *> LDAFB is INTEGER
- *> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
- *> \endverbatim
- *>
- *> \param[in,out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> If FACT = 'F', then IPIV is an input argument and on entry
- *> contains the pivot indices from the factorization A = P*L*U
- *> as computed by SGETRF; row i of the matrix was interchanged
- *> with row IPIV(i).
- *>
- *> If FACT = 'N', then IPIV is an output argument and on exit
- *> contains the pivot indices from the factorization A = P*L*U
- *> of the original matrix A.
- *>
- *> If FACT = 'E', then IPIV is an output argument and on exit
- *> contains the pivot indices from the factorization A = P*L*U
- *> of the equilibrated matrix A.
- *> \endverbatim
- *>
- *> \param[in,out] EQUED
- *> \verbatim
- *> EQUED is CHARACTER*1
- *> Specifies the form of equilibration that was done.
- *> = 'N': No equilibration (always true if FACT = 'N').
- *> = 'R': Row equilibration, i.e., A has been premultiplied by
- *> diag(R).
- *> = 'C': Column equilibration, i.e., A has been postmultiplied
- *> by diag(C).
- *> = 'B': Both row and column equilibration, i.e., A has been
- *> replaced by diag(R) * A * diag(C).
- *> EQUED is an input argument if FACT = 'F'; otherwise, it is an
- *> output argument.
- *> \endverbatim
- *>
- *> \param[in,out] R
- *> \verbatim
- *> R is REAL array, dimension (N)
- *> The row scale factors for A. If EQUED = 'R' or 'B', A is
- *> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
- *> is not accessed. R is an input argument if FACT = 'F';
- *> otherwise, R is an output argument. If FACT = 'F' and
- *> EQUED = 'R' or 'B', each element of R must be positive.
- *> If R is output, each element of R is a power of the radix.
- *> If R is input, each element of R should be a power of the radix
- *> to ensure a reliable solution and error estimates. Scaling by
- *> powers of the radix does not cause rounding errors unless the
- *> result underflows or overflows. Rounding errors during scaling
- *> lead to refining with a matrix that is not equivalent to the
- *> input matrix, producing error estimates that may not be
- *> reliable.
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is REAL array, dimension (N)
- *> The column scale factors for A. If EQUED = 'C' or 'B', A is
- *> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
- *> is not accessed. C is an input argument if FACT = 'F';
- *> otherwise, C is an output argument. If FACT = 'F' and
- *> EQUED = 'C' or 'B', each element of C must be positive.
- *> If C is output, each element of C is a power of the radix.
- *> If C is input, each element of C should be a power of the radix
- *> to ensure a reliable solution and error estimates. Scaling by
- *> powers of the radix does not cause rounding errors unless the
- *> result underflows or overflows. Rounding errors during scaling
- *> lead to refining with a matrix that is not equivalent to the
- *> input matrix, producing error estimates that may not be
- *> reliable.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,NRHS)
- *> On entry, the N-by-NRHS right hand side matrix B.
- *> On exit,
- *> if EQUED = 'N', B is not modified;
- *> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
- *> diag(R)*B;
- *> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
- *> overwritten by diag(C)*B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is REAL array, dimension (LDX,NRHS)
- *> If INFO = 0, the N-by-NRHS solution matrix X to the original
- *> system of equations. Note that A and B are modified on exit
- *> if EQUED .ne. 'N', and the solution to the equilibrated system is
- *> inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or
- *> inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is REAL
- *> Reciprocal scaled condition number. This is an estimate of the
- *> reciprocal Skeel condition number of the matrix A after
- *> equilibration (if done). If this is less than the machine
- *> precision (in particular, if it is zero), the matrix is singular
- *> to working precision. Note that the error may still be small even
- *> if this number is very small and the matrix appears ill-
- *> conditioned.
- *> \endverbatim
- *>
- *> \param[out] RPVGRW
- *> \verbatim
- *> RPVGRW is REAL
- *> Reciprocal pivot growth. On exit, this contains the reciprocal
- *> pivot growth factor norm(A)/norm(U). The "max absolute element"
- *> norm is used. If this is much less than 1, then the stability of
- *> the LU factorization of the (equilibrated) matrix A could be poor.
- *> This also means that the solution X, estimated condition numbers,
- *> and error bounds could be unreliable. If factorization fails with
- *> 0<INFO<=N, then this contains the reciprocal pivot growth factor
- *> for the leading INFO columns of A. In SGESVX, this quantity is
- *> returned in WORK(1).
- *> \endverbatim
- *>
- *> \param[out] BERR
- *> \verbatim
- *> BERR is REAL array, dimension (NRHS)
- *> Componentwise relative backward error. This is the
- *> componentwise relative backward error of each solution vector X(j)
- *> (i.e., the smallest relative change in any element of A or B that
- *> makes X(j) an exact solution).
- *> \endverbatim
- *>
- *> \param[in] N_ERR_BNDS
- *> \verbatim
- *> N_ERR_BNDS is INTEGER
- *> Number of error bounds to return for each right hand side
- *> and each type (normwise or componentwise). See ERR_BNDS_NORM and
- *> ERR_BNDS_COMP below.
- *> \endverbatim
- *>
- *> \param[out] ERR_BNDS_NORM
- *> \verbatim
- *> ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
- *> For each right-hand side, this array contains information about
- *> various error bounds and condition numbers corresponding to the
- *> normwise relative error, which is defined as follows:
- *>
- *> Normwise relative error in the ith solution vector:
- *> max_j (abs(XTRUE(j,i) - X(j,i)))
- *> ------------------------------
- *> max_j abs(X(j,i))
- *>
- *> The array is indexed by the type of error information as described
- *> below. There currently are up to three pieces of information
- *> returned.
- *>
- *> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
- *> right-hand side.
- *>
- *> The second index in ERR_BNDS_NORM(:,err) contains the following
- *> three fields:
- *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
- *> reciprocal condition number is less than the threshold
- *> sqrt(n) * slamch('Epsilon').
- *>
- *> err = 2 "Guaranteed" error bound: The estimated forward error,
- *> almost certainly within a factor of 10 of the true error
- *> so long as the next entry is greater than the threshold
- *> sqrt(n) * slamch('Epsilon'). This error bound should only
- *> be trusted if the previous boolean is true.
- *>
- *> err = 3 Reciprocal condition number: Estimated normwise
- *> reciprocal condition number. Compared with the threshold
- *> sqrt(n) * slamch('Epsilon') to determine if the error
- *> estimate is "guaranteed". These reciprocal condition
- *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
- *> appropriately scaled matrix Z.
- *> Let Z = S*A, where S scales each row by a power of the
- *> radix so all absolute row sums of Z are approximately 1.
- *>
- *> See Lapack Working Note 165 for further details and extra
- *> cautions.
- *> \endverbatim
- *>
- *> \param[out] ERR_BNDS_COMP
- *> \verbatim
- *> ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
- *> For each right-hand side, this array contains information about
- *> various error bounds and condition numbers corresponding to the
- *> componentwise relative error, which is defined as follows:
- *>
- *> Componentwise relative error in the ith solution vector:
- *> abs(XTRUE(j,i) - X(j,i))
- *> max_j ----------------------
- *> abs(X(j,i))
- *>
- *> The array is indexed by the right-hand side i (on which the
- *> componentwise relative error depends), and the type of error
- *> information as described below. There currently are up to three
- *> pieces of information returned for each right-hand side. If
- *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
- *> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
- *> the first (:,N_ERR_BNDS) entries are returned.
- *>
- *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
- *> right-hand side.
- *>
- *> The second index in ERR_BNDS_COMP(:,err) contains the following
- *> three fields:
- *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
- *> reciprocal condition number is less than the threshold
- *> sqrt(n) * slamch('Epsilon').
- *>
- *> err = 2 "Guaranteed" error bound: The estimated forward error,
- *> almost certainly within a factor of 10 of the true error
- *> so long as the next entry is greater than the threshold
- *> sqrt(n) * slamch('Epsilon'). This error bound should only
- *> be trusted if the previous boolean is true.
- *>
- *> err = 3 Reciprocal condition number: Estimated componentwise
- *> reciprocal condition number. Compared with the threshold
- *> sqrt(n) * slamch('Epsilon') to determine if the error
- *> estimate is "guaranteed". These reciprocal condition
- *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
- *> appropriately scaled matrix Z.
- *> Let Z = S*(A*diag(x)), where x is the solution for the
- *> current right-hand side and S scales each row of
- *> A*diag(x) by a power of the radix so all absolute row
- *> sums of Z are approximately 1.
- *>
- *> See Lapack Working Note 165 for further details and extra
- *> cautions.
- *> \endverbatim
- *>
- *> \param[in] NPARAMS
- *> \verbatim
- *> NPARAMS is INTEGER
- *> Specifies the number of parameters set in PARAMS. If <= 0, the
- *> PARAMS array is never referenced and default values are used.
- *> \endverbatim
- *>
- *> \param[in,out] PARAMS
- *> \verbatim
- *> PARAMS is REAL array, dimension NPARAMS
- *> Specifies algorithm parameters. If an entry is < 0.0, then
- *> that entry will be filled with default value used for that
- *> parameter. Only positions up to NPARAMS are accessed; defaults
- *> are used for higher-numbered parameters.
- *>
- *> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
- *> refinement or not.
- *> Default: 1.0
- *> = 0.0: No refinement is performed, and no error bounds are
- *> computed.
- *> = 1.0: Use the double-precision refinement algorithm,
- *> possibly with doubled-single computations if the
- *> compilation environment does not support DOUBLE
- *> PRECISION.
- *> (other values are reserved for future use)
- *>
- *> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
- *> computations allowed for refinement.
- *> Default: 10
- *> Aggressive: Set to 100 to permit convergence using approximate
- *> factorizations or factorizations other than LU. If
- *> the factorization uses a technique other than
- *> Gaussian elimination, the guarantees in
- *> err_bnds_norm and err_bnds_comp may no longer be
- *> trustworthy.
- *>
- *> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
- *> will attempt to find a solution with small componentwise
- *> relative error in the double-precision algorithm. Positive
- *> is true, 0.0 is false.
- *> Default: 1.0 (attempt componentwise convergence)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (4*N)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: Successful exit. The solution to every right-hand side is
- *> guaranteed.
- *> < 0: If INFO = -i, the i-th argument had an illegal value
- *> > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
- *> has been completed, but the factor U is exactly singular, so
- *> the solution and error bounds could not be computed. RCOND = 0
- *> is returned.
- *> = N+J: The solution corresponding to the Jth right-hand side is
- *> not guaranteed. The solutions corresponding to other right-
- *> hand sides K with K > J may not be guaranteed as well, but
- *> only the first such right-hand side is reported. If a small
- *> componentwise error is not requested (PARAMS(3) = 0.0) then
- *> the Jth right-hand side is the first with a normwise error
- *> bound that is not guaranteed (the smallest J such
- *> that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
- *> the Jth right-hand side is the first with either a normwise or
- *> componentwise error bound that is not guaranteed (the smallest
- *> J such that either ERR_BNDS_NORM(J,1) = 0.0 or
- *> ERR_BNDS_COMP(J,1) = 0.0). See the definition of
- *> ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
- *> about all of the right-hand sides check ERR_BNDS_NORM or
- *> ERR_BNDS_COMP.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date April 2012
- *
- *> \ingroup realGBsolve
- *
- * =====================================================================
- SUBROUTINE SGBSVXX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
- $ LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
- $ RCOND, RPVGRW, BERR, N_ERR_BNDS,
- $ ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
- $ WORK, IWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * April 2012
- *
- * .. Scalar Arguments ..
- CHARACTER EQUED, FACT, TRANS
- INTEGER INFO, LDAB, LDAFB, LDB, LDX, N, NRHS, NPARAMS,
- $ N_ERR_BNDS
- REAL RCOND, RPVGRW
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * ), IWORK( * )
- REAL AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
- $ X( LDX , * ),WORK( * )
- REAL R( * ), C( * ), PARAMS( * ), BERR( * ),
- $ ERR_BNDS_NORM( NRHS, * ),
- $ ERR_BNDS_COMP( NRHS, * )
- * ..
- *
- * ==================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
- INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
- INTEGER CMP_ERR_I, PIV_GROWTH_I
- PARAMETER ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
- $ BERR_I = 3 )
- PARAMETER ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
- PARAMETER ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
- $ PIV_GROWTH_I = 9 )
- * ..
- * .. Local Scalars ..
- LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
- INTEGER INFEQU, I, J, KL, KU
- REAL AMAX, BIGNUM, COLCND, RCMAX, RCMIN,
- $ ROWCND, SMLNUM
- * ..
- * .. External Functions ..
- EXTERNAL LSAME, SLAMCH, SLA_GBRPVGRW
- LOGICAL LSAME
- REAL SLAMCH, SLA_GBRPVGRW
- * ..
- * .. External Subroutines ..
- EXTERNAL SGBEQUB, SGBTRF, SGBTRS, SLACPY, SLAQGB,
- $ XERBLA, SLASCL2, SGBRFSX
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- NOFACT = LSAME( FACT, 'N' )
- EQUIL = LSAME( FACT, 'E' )
- NOTRAN = LSAME( TRANS, 'N' )
- SMLNUM = SLAMCH( 'Safe minimum' )
- BIGNUM = ONE / SMLNUM
- IF( NOFACT .OR. EQUIL ) THEN
- EQUED = 'N'
- ROWEQU = .FALSE.
- COLEQU = .FALSE.
- ELSE
- ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
- COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
- END IF
- *
- * Default is failure. If an input parameter is wrong or
- * factorization fails, make everything look horrible. Only the
- * pivot growth is set here, the rest is initialized in SGBRFSX.
- *
- RPVGRW = ZERO
- *
- * Test the input parameters. PARAMS is not tested until SGBRFSX.
- *
- IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
- $ LSAME( FACT, 'F' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
- $ LSAME( TRANS, 'C' ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( KL.LT.0 ) THEN
- INFO = -4
- ELSE IF( KU.LT.0 ) THEN
- INFO = -5
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -6
- ELSE IF( LDAB.LT.KL+KU+1 ) THEN
- INFO = -8
- ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
- INFO = -10
- ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
- $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
- INFO = -12
- ELSE
- IF( ROWEQU ) THEN
- RCMIN = BIGNUM
- RCMAX = ZERO
- DO 10 J = 1, N
- RCMIN = MIN( RCMIN, R( J ) )
- RCMAX = MAX( RCMAX, R( J ) )
- 10 CONTINUE
- IF( RCMIN.LE.ZERO ) THEN
- INFO = -13
- ELSE IF( N.GT.0 ) THEN
- ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
- ELSE
- ROWCND = ONE
- END IF
- END IF
- IF( COLEQU .AND. INFO.EQ.0 ) THEN
- RCMIN = BIGNUM
- RCMAX = ZERO
- DO 20 J = 1, N
- RCMIN = MIN( RCMIN, C( J ) )
- RCMAX = MAX( RCMAX, C( J ) )
- 20 CONTINUE
- IF( RCMIN.LE.ZERO ) THEN
- INFO = -14
- ELSE IF( N.GT.0 ) THEN
- COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
- ELSE
- COLCND = ONE
- END IF
- END IF
- IF( INFO.EQ.0 ) THEN
- IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -15
- ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
- INFO = -16
- END IF
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SGBSVXX', -INFO )
- RETURN
- END IF
- *
- IF( EQUIL ) THEN
- *
- * Compute row and column scalings to equilibrate the matrix A.
- *
- CALL SGBEQUB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
- $ AMAX, INFEQU )
- IF( INFEQU.EQ.0 ) THEN
- *
- * Equilibrate the matrix.
- *
- CALL SLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
- $ AMAX, EQUED )
- ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
- COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
- END IF
- *
- * If the scaling factors are not applied, set them to 1.0.
- *
- IF ( .NOT.ROWEQU ) THEN
- DO J = 1, N
- R( J ) = 1.0
- END DO
- END IF
- IF ( .NOT.COLEQU ) THEN
- DO J = 1, N
- C( J ) = 1.0
- END DO
- END IF
- END IF
- *
- * Scale the right hand side.
- *
- IF( NOTRAN ) THEN
- IF( ROWEQU ) CALL SLASCL2(N, NRHS, R, B, LDB)
- ELSE
- IF( COLEQU ) CALL SLASCL2(N, NRHS, C, B, LDB)
- END IF
- *
- IF( NOFACT .OR. EQUIL ) THEN
- *
- * Compute the LU factorization of A.
- *
- DO 40, J = 1, N
- DO 30, I = KL+1, 2*KL+KU+1
- AFB( I, J ) = AB( I-KL, J )
- 30 CONTINUE
- 40 CONTINUE
- CALL SGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
- *
- * Return if INFO is non-zero.
- *
- IF( INFO.GT.0 ) THEN
- *
- * Pivot in column INFO is exactly 0
- * Compute the reciprocal pivot growth factor of the
- * leading rank-deficient INFO columns of A.
- *
- RPVGRW = SLA_GBRPVGRW( N, KL, KU, INFO, AB, LDAB, AFB,
- $ LDAFB )
- RETURN
- END IF
- END IF
- *
- * Compute the reciprocal pivot growth factor RPVGRW.
- *
- RPVGRW = SLA_GBRPVGRW( N, KL, KU, N, AB, LDAB, AFB, LDAFB )
- *
- * Compute the solution matrix X.
- *
- CALL SLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
- CALL SGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
- $ INFO )
- *
- * Use iterative refinement to improve the computed solution and
- * compute error bounds and backward error estimates for it.
- *
- CALL SGBRFSX( TRANS, EQUED, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
- $ IPIV, R, C, B, LDB, X, LDX, RCOND, BERR,
- $ N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
- $ WORK, IWORK, INFO )
- *
- * Scale solutions.
- *
- IF ( COLEQU .AND. NOTRAN ) THEN
- CALL SLASCL2 ( N, NRHS, C, X, LDX )
- ELSE IF ( ROWEQU .AND. .NOT.NOTRAN ) THEN
- CALL SLASCL2 ( N, NRHS, R, X, LDX )
- END IF
- *
- RETURN
- *
- * End of SGBSVXX
- *
- END
|