|
- *> \brief \b DTRSNA
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DTRSNA + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsna.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsna.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsna.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
- * LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER HOWMNY, JOB
- * INTEGER INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
- * ..
- * .. Array Arguments ..
- * LOGICAL SELECT( * )
- * INTEGER IWORK( * )
- * DOUBLE PRECISION S( * ), SEP( * ), T( LDT, * ), VL( LDVL, * ),
- * $ VR( LDVR, * ), WORK( LDWORK, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DTRSNA estimates reciprocal condition numbers for specified
- *> eigenvalues and/or right eigenvectors of a real upper
- *> quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q
- *> orthogonal).
- *>
- *> T must be in Schur canonical form (as returned by DHSEQR), that is,
- *> block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
- *> 2-by-2 diagonal block has its diagonal elements equal and its
- *> off-diagonal elements of opposite sign.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOB
- *> \verbatim
- *> JOB is CHARACTER*1
- *> Specifies whether condition numbers are required for
- *> eigenvalues (S) or eigenvectors (SEP):
- *> = 'E': for eigenvalues only (S);
- *> = 'V': for eigenvectors only (SEP);
- *> = 'B': for both eigenvalues and eigenvectors (S and SEP).
- *> \endverbatim
- *>
- *> \param[in] HOWMNY
- *> \verbatim
- *> HOWMNY is CHARACTER*1
- *> = 'A': compute condition numbers for all eigenpairs;
- *> = 'S': compute condition numbers for selected eigenpairs
- *> specified by the array SELECT.
- *> \endverbatim
- *>
- *> \param[in] SELECT
- *> \verbatim
- *> SELECT is LOGICAL array, dimension (N)
- *> If HOWMNY = 'S', SELECT specifies the eigenpairs for which
- *> condition numbers are required. To select condition numbers
- *> for the eigenpair corresponding to a real eigenvalue w(j),
- *> SELECT(j) must be set to .TRUE.. To select condition numbers
- *> corresponding to a complex conjugate pair of eigenvalues w(j)
- *> and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
- *> set to .TRUE..
- *> If HOWMNY = 'A', SELECT is not referenced.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix T. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] T
- *> \verbatim
- *> T is DOUBLE PRECISION array, dimension (LDT,N)
- *> The upper quasi-triangular matrix T, in Schur canonical form.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the array T. LDT >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] VL
- *> \verbatim
- *> VL is DOUBLE PRECISION array, dimension (LDVL,M)
- *> If JOB = 'E' or 'B', VL must contain left eigenvectors of T
- *> (or of any Q*T*Q**T with Q orthogonal), corresponding to the
- *> eigenpairs specified by HOWMNY and SELECT. The eigenvectors
- *> must be stored in consecutive columns of VL, as returned by
- *> DHSEIN or DTREVC.
- *> If JOB = 'V', VL is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDVL
- *> \verbatim
- *> LDVL is INTEGER
- *> The leading dimension of the array VL.
- *> LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
- *> \endverbatim
- *>
- *> \param[in] VR
- *> \verbatim
- *> VR is DOUBLE PRECISION array, dimension (LDVR,M)
- *> If JOB = 'E' or 'B', VR must contain right eigenvectors of T
- *> (or of any Q*T*Q**T with Q orthogonal), corresponding to the
- *> eigenpairs specified by HOWMNY and SELECT. The eigenvectors
- *> must be stored in consecutive columns of VR, as returned by
- *> DHSEIN or DTREVC.
- *> If JOB = 'V', VR is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDVR
- *> \verbatim
- *> LDVR is INTEGER
- *> The leading dimension of the array VR.
- *> LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is DOUBLE PRECISION array, dimension (MM)
- *> If JOB = 'E' or 'B', the reciprocal condition numbers of the
- *> selected eigenvalues, stored in consecutive elements of the
- *> array. For a complex conjugate pair of eigenvalues two
- *> consecutive elements of S are set to the same value. Thus
- *> S(j), SEP(j), and the j-th columns of VL and VR all
- *> correspond to the same eigenpair (but not in general the
- *> j-th eigenpair, unless all eigenpairs are selected).
- *> If JOB = 'V', S is not referenced.
- *> \endverbatim
- *>
- *> \param[out] SEP
- *> \verbatim
- *> SEP is DOUBLE PRECISION array, dimension (MM)
- *> If JOB = 'V' or 'B', the estimated reciprocal condition
- *> numbers of the selected eigenvectors, stored in consecutive
- *> elements of the array. For a complex eigenvector two
- *> consecutive elements of SEP are set to the same value. If
- *> the eigenvalues cannot be reordered to compute SEP(j), SEP(j)
- *> is set to 0; this can only occur when the true value would be
- *> very small anyway.
- *> If JOB = 'E', SEP is not referenced.
- *> \endverbatim
- *>
- *> \param[in] MM
- *> \verbatim
- *> MM is INTEGER
- *> The number of elements in the arrays S (if JOB = 'E' or 'B')
- *> and/or SEP (if JOB = 'V' or 'B'). MM >= M.
- *> \endverbatim
- *>
- *> \param[out] M
- *> \verbatim
- *> M is INTEGER
- *> The number of elements of the arrays S and/or SEP actually
- *> used to store the estimated condition numbers.
- *> If HOWMNY = 'A', M is set to N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (LDWORK,N+6)
- *> If JOB = 'E', WORK is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDWORK
- *> \verbatim
- *> LDWORK is INTEGER
- *> The leading dimension of the array WORK.
- *> LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (2*(N-1))
- *> If JOB = 'E', IWORK is not referenced.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2017
- *
- *> \ingroup doubleOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The reciprocal of the condition number of an eigenvalue lambda is
- *> defined as
- *>
- *> S(lambda) = |v**T*u| / (norm(u)*norm(v))
- *>
- *> where u and v are the right and left eigenvectors of T corresponding
- *> to lambda; v**T denotes the transpose of v, and norm(u)
- *> denotes the Euclidean norm. These reciprocal condition numbers always
- *> lie between zero (very badly conditioned) and one (very well
- *> conditioned). If n = 1, S(lambda) is defined to be 1.
- *>
- *> An approximate error bound for a computed eigenvalue W(i) is given by
- *>
- *> EPS * norm(T) / S(i)
- *>
- *> where EPS is the machine precision.
- *>
- *> The reciprocal of the condition number of the right eigenvector u
- *> corresponding to lambda is defined as follows. Suppose
- *>
- *> T = ( lambda c )
- *> ( 0 T22 )
- *>
- *> Then the reciprocal condition number is
- *>
- *> SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
- *>
- *> where sigma-min denotes the smallest singular value. We approximate
- *> the smallest singular value by the reciprocal of an estimate of the
- *> one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
- *> defined to be abs(T(1,1)).
- *>
- *> An approximate error bound for a computed right eigenvector VR(i)
- *> is given by
- *>
- *> EPS * norm(T) / SEP(i)
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE DTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
- $ LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK,
- $ INFO )
- *
- * -- LAPACK computational routine (version 3.8.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2017
- *
- * .. Scalar Arguments ..
- CHARACTER HOWMNY, JOB
- INTEGER INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
- * ..
- * .. Array Arguments ..
- LOGICAL SELECT( * )
- INTEGER IWORK( * )
- DOUBLE PRECISION S( * ), SEP( * ), T( LDT, * ), VL( LDVL, * ),
- $ VR( LDVR, * ), WORK( LDWORK, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE, TWO
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL PAIR, SOMCON, WANTBH, WANTS, WANTSP
- INTEGER I, IERR, IFST, ILST, J, K, KASE, KS, N2, NN
- DOUBLE PRECISION BIGNUM, COND, CS, DELTA, DUMM, EPS, EST, LNRM,
- $ MU, PROD, PROD1, PROD2, RNRM, SCALE, SMLNUM, SN
- * ..
- * .. Local Arrays ..
- INTEGER ISAVE( 3 )
- DOUBLE PRECISION DUMMY( 1 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DDOT, DLAMCH, DLAPY2, DNRM2
- EXTERNAL LSAME, DDOT, DLAMCH, DLAPY2, DNRM2
- * ..
- * .. External Subroutines ..
- EXTERNAL DLABAD, DLACN2, DLACPY, DLAQTR, DTREXC, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Decode and test the input parameters
- *
- WANTBH = LSAME( JOB, 'B' )
- WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
- WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
- *
- SOMCON = LSAME( HOWMNY, 'S' )
- *
- INFO = 0
- IF( .NOT.WANTS .AND. .NOT.WANTSP ) THEN
- INFO = -1
- ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN
- INFO = -8
- ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN
- INFO = -10
- ELSE
- *
- * Set M to the number of eigenpairs for which condition numbers
- * are required, and test MM.
- *
- IF( SOMCON ) THEN
- M = 0
- PAIR = .FALSE.
- DO 10 K = 1, N
- IF( PAIR ) THEN
- PAIR = .FALSE.
- ELSE
- IF( K.LT.N ) THEN
- IF( T( K+1, K ).EQ.ZERO ) THEN
- IF( SELECT( K ) )
- $ M = M + 1
- ELSE
- PAIR = .TRUE.
- IF( SELECT( K ) .OR. SELECT( K+1 ) )
- $ M = M + 2
- END IF
- ELSE
- IF( SELECT( N ) )
- $ M = M + 1
- END IF
- END IF
- 10 CONTINUE
- ELSE
- M = N
- END IF
- *
- IF( MM.LT.M ) THEN
- INFO = -13
- ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN
- INFO = -16
- END IF
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DTRSNA', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( N.EQ.1 ) THEN
- IF( SOMCON ) THEN
- IF( .NOT.SELECT( 1 ) )
- $ RETURN
- END IF
- IF( WANTS )
- $ S( 1 ) = ONE
- IF( WANTSP )
- $ SEP( 1 ) = ABS( T( 1, 1 ) )
- RETURN
- END IF
- *
- * Get machine constants
- *
- EPS = DLAMCH( 'P' )
- SMLNUM = DLAMCH( 'S' ) / EPS
- BIGNUM = ONE / SMLNUM
- CALL DLABAD( SMLNUM, BIGNUM )
- *
- KS = 0
- PAIR = .FALSE.
- DO 60 K = 1, N
- *
- * Determine whether T(k,k) begins a 1-by-1 or 2-by-2 block.
- *
- IF( PAIR ) THEN
- PAIR = .FALSE.
- GO TO 60
- ELSE
- IF( K.LT.N )
- $ PAIR = T( K+1, K ).NE.ZERO
- END IF
- *
- * Determine whether condition numbers are required for the k-th
- * eigenpair.
- *
- IF( SOMCON ) THEN
- IF( PAIR ) THEN
- IF( .NOT.SELECT( K ) .AND. .NOT.SELECT( K+1 ) )
- $ GO TO 60
- ELSE
- IF( .NOT.SELECT( K ) )
- $ GO TO 60
- END IF
- END IF
- *
- KS = KS + 1
- *
- IF( WANTS ) THEN
- *
- * Compute the reciprocal condition number of the k-th
- * eigenvalue.
- *
- IF( .NOT.PAIR ) THEN
- *
- * Real eigenvalue.
- *
- PROD = DDOT( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
- RNRM = DNRM2( N, VR( 1, KS ), 1 )
- LNRM = DNRM2( N, VL( 1, KS ), 1 )
- S( KS ) = ABS( PROD ) / ( RNRM*LNRM )
- ELSE
- *
- * Complex eigenvalue.
- *
- PROD1 = DDOT( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
- PROD1 = PROD1 + DDOT( N, VR( 1, KS+1 ), 1, VL( 1, KS+1 ),
- $ 1 )
- PROD2 = DDOT( N, VL( 1, KS ), 1, VR( 1, KS+1 ), 1 )
- PROD2 = PROD2 - DDOT( N, VL( 1, KS+1 ), 1, VR( 1, KS ),
- $ 1 )
- RNRM = DLAPY2( DNRM2( N, VR( 1, KS ), 1 ),
- $ DNRM2( N, VR( 1, KS+1 ), 1 ) )
- LNRM = DLAPY2( DNRM2( N, VL( 1, KS ), 1 ),
- $ DNRM2( N, VL( 1, KS+1 ), 1 ) )
- COND = DLAPY2( PROD1, PROD2 ) / ( RNRM*LNRM )
- S( KS ) = COND
- S( KS+1 ) = COND
- END IF
- END IF
- *
- IF( WANTSP ) THEN
- *
- * Estimate the reciprocal condition number of the k-th
- * eigenvector.
- *
- * Copy the matrix T to the array WORK and swap the diagonal
- * block beginning at T(k,k) to the (1,1) position.
- *
- CALL DLACPY( 'Full', N, N, T, LDT, WORK, LDWORK )
- IFST = K
- ILST = 1
- CALL DTREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, IFST, ILST,
- $ WORK( 1, N+1 ), IERR )
- *
- IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
- *
- * Could not swap because blocks not well separated
- *
- SCALE = ONE
- EST = BIGNUM
- ELSE
- *
- * Reordering successful
- *
- IF( WORK( 2, 1 ).EQ.ZERO ) THEN
- *
- * Form C = T22 - lambda*I in WORK(2:N,2:N).
- *
- DO 20 I = 2, N
- WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 )
- 20 CONTINUE
- N2 = 1
- NN = N - 1
- ELSE
- *
- * Triangularize the 2 by 2 block by unitary
- * transformation U = [ cs i*ss ]
- * [ i*ss cs ].
- * such that the (1,1) position of WORK is complex
- * eigenvalue lambda with positive imaginary part. (2,2)
- * position of WORK is the complex eigenvalue lambda
- * with negative imaginary part.
- *
- MU = SQRT( ABS( WORK( 1, 2 ) ) )*
- $ SQRT( ABS( WORK( 2, 1 ) ) )
- DELTA = DLAPY2( MU, WORK( 2, 1 ) )
- CS = MU / DELTA
- SN = -WORK( 2, 1 ) / DELTA
- *
- * Form
- *
- * C**T = WORK(2:N,2:N) + i*[rwork(1) ..... rwork(n-1) ]
- * [ mu ]
- * [ .. ]
- * [ .. ]
- * [ mu ]
- * where C**T is transpose of matrix C,
- * and RWORK is stored starting in the N+1-st column of
- * WORK.
- *
- DO 30 J = 3, N
- WORK( 2, J ) = CS*WORK( 2, J )
- WORK( J, J ) = WORK( J, J ) - WORK( 1, 1 )
- 30 CONTINUE
- WORK( 2, 2 ) = ZERO
- *
- WORK( 1, N+1 ) = TWO*MU
- DO 40 I = 2, N - 1
- WORK( I, N+1 ) = SN*WORK( 1, I+1 )
- 40 CONTINUE
- N2 = 2
- NN = 2*( N-1 )
- END IF
- *
- * Estimate norm(inv(C**T))
- *
- EST = ZERO
- KASE = 0
- 50 CONTINUE
- CALL DLACN2( NN, WORK( 1, N+2 ), WORK( 1, N+4 ), IWORK,
- $ EST, KASE, ISAVE )
- IF( KASE.NE.0 ) THEN
- IF( KASE.EQ.1 ) THEN
- IF( N2.EQ.1 ) THEN
- *
- * Real eigenvalue: solve C**T*x = scale*c.
- *
- CALL DLAQTR( .TRUE., .TRUE., N-1, WORK( 2, 2 ),
- $ LDWORK, DUMMY, DUMM, SCALE,
- $ WORK( 1, N+4 ), WORK( 1, N+6 ),
- $ IERR )
- ELSE
- *
- * Complex eigenvalue: solve
- * C**T*(p+iq) = scale*(c+id) in real arithmetic.
- *
- CALL DLAQTR( .TRUE., .FALSE., N-1, WORK( 2, 2 ),
- $ LDWORK, WORK( 1, N+1 ), MU, SCALE,
- $ WORK( 1, N+4 ), WORK( 1, N+6 ),
- $ IERR )
- END IF
- ELSE
- IF( N2.EQ.1 ) THEN
- *
- * Real eigenvalue: solve C*x = scale*c.
- *
- CALL DLAQTR( .FALSE., .TRUE., N-1, WORK( 2, 2 ),
- $ LDWORK, DUMMY, DUMM, SCALE,
- $ WORK( 1, N+4 ), WORK( 1, N+6 ),
- $ IERR )
- ELSE
- *
- * Complex eigenvalue: solve
- * C*(p+iq) = scale*(c+id) in real arithmetic.
- *
- CALL DLAQTR( .FALSE., .FALSE., N-1,
- $ WORK( 2, 2 ), LDWORK,
- $ WORK( 1, N+1 ), MU, SCALE,
- $ WORK( 1, N+4 ), WORK( 1, N+6 ),
- $ IERR )
- *
- END IF
- END IF
- *
- GO TO 50
- END IF
- END IF
- *
- SEP( KS ) = SCALE / MAX( EST, SMLNUM )
- IF( PAIR )
- $ SEP( KS+1 ) = SEP( KS )
- END IF
- *
- IF( PAIR )
- $ KS = KS + 1
- *
- 60 CONTINUE
- RETURN
- *
- * End of DTRSNA
- *
- END
|