|
- *> \brief \b DTRSEN
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DTRSEN + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsen.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsen.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsen.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
- * M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER COMPQ, JOB
- * INTEGER INFO, LDQ, LDT, LIWORK, LWORK, M, N
- * DOUBLE PRECISION S, SEP
- * ..
- * .. Array Arguments ..
- * LOGICAL SELECT( * )
- * INTEGER IWORK( * )
- * DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
- * $ WR( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DTRSEN reorders the real Schur factorization of a real matrix
- *> A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
- *> the leading diagonal blocks of the upper quasi-triangular matrix T,
- *> and the leading columns of Q form an orthonormal basis of the
- *> corresponding right invariant subspace.
- *>
- *> Optionally the routine computes the reciprocal condition numbers of
- *> the cluster of eigenvalues and/or the invariant subspace.
- *>
- *> T must be in Schur canonical form (as returned by DHSEQR), that is,
- *> block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
- *> 2-by-2 diagonal block has its diagonal elements equal and its
- *> off-diagonal elements of opposite sign.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOB
- *> \verbatim
- *> JOB is CHARACTER*1
- *> Specifies whether condition numbers are required for the
- *> cluster of eigenvalues (S) or the invariant subspace (SEP):
- *> = 'N': none;
- *> = 'E': for eigenvalues only (S);
- *> = 'V': for invariant subspace only (SEP);
- *> = 'B': for both eigenvalues and invariant subspace (S and
- *> SEP).
- *> \endverbatim
- *>
- *> \param[in] COMPQ
- *> \verbatim
- *> COMPQ is CHARACTER*1
- *> = 'V': update the matrix Q of Schur vectors;
- *> = 'N': do not update Q.
- *> \endverbatim
- *>
- *> \param[in] SELECT
- *> \verbatim
- *> SELECT is LOGICAL array, dimension (N)
- *> SELECT specifies the eigenvalues in the selected cluster. To
- *> select a real eigenvalue w(j), SELECT(j) must be set to
- *> .TRUE.. To select a complex conjugate pair of eigenvalues
- *> w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
- *> either SELECT(j) or SELECT(j+1) or both must be set to
- *> .TRUE.; a complex conjugate pair of eigenvalues must be
- *> either both included in the cluster or both excluded.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix T. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] T
- *> \verbatim
- *> T is DOUBLE PRECISION array, dimension (LDT,N)
- *> On entry, the upper quasi-triangular matrix T, in Schur
- *> canonical form.
- *> On exit, T is overwritten by the reordered matrix T, again in
- *> Schur canonical form, with the selected eigenvalues in the
- *> leading diagonal blocks.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the array T. LDT >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] Q
- *> \verbatim
- *> Q is DOUBLE PRECISION array, dimension (LDQ,N)
- *> On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
- *> On exit, if COMPQ = 'V', Q has been postmultiplied by the
- *> orthogonal transformation matrix which reorders T; the
- *> leading M columns of Q form an orthonormal basis for the
- *> specified invariant subspace.
- *> If COMPQ = 'N', Q is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q.
- *> LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
- *> \endverbatim
- *>
- *> \param[out] WR
- *> \verbatim
- *> WR is DOUBLE PRECISION array, dimension (N)
- *> \endverbatim
- *> \param[out] WI
- *> \verbatim
- *> WI is DOUBLE PRECISION array, dimension (N)
- *>
- *> The real and imaginary parts, respectively, of the reordered
- *> eigenvalues of T. The eigenvalues are stored in the same
- *> order as on the diagonal of T, with WR(i) = T(i,i) and, if
- *> T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
- *> WI(i+1) = -WI(i). Note that if a complex eigenvalue is
- *> sufficiently ill-conditioned, then its value may differ
- *> significantly from its value before reordering.
- *> \endverbatim
- *>
- *> \param[out] M
- *> \verbatim
- *> M is INTEGER
- *> The dimension of the specified invariant subspace.
- *> 0 < = M <= N.
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is DOUBLE PRECISION
- *> If JOB = 'E' or 'B', S is a lower bound on the reciprocal
- *> condition number for the selected cluster of eigenvalues.
- *> S cannot underestimate the true reciprocal condition number
- *> by more than a factor of sqrt(N). If M = 0 or N, S = 1.
- *> If JOB = 'N' or 'V', S is not referenced.
- *> \endverbatim
- *>
- *> \param[out] SEP
- *> \verbatim
- *> SEP is DOUBLE PRECISION
- *> If JOB = 'V' or 'B', SEP is the estimated reciprocal
- *> condition number of the specified invariant subspace. If
- *> M = 0 or N, SEP = norm(T).
- *> If JOB = 'N' or 'E', SEP is not referenced.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> If JOB = 'N', LWORK >= max(1,N);
- *> if JOB = 'E', LWORK >= max(1,M*(N-M));
- *> if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
- *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
- *> \endverbatim
- *>
- *> \param[in] LIWORK
- *> \verbatim
- *> LIWORK is INTEGER
- *> The dimension of the array IWORK.
- *> If JOB = 'N' or 'E', LIWORK >= 1;
- *> if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
- *>
- *> If LIWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the optimal size of the IWORK array,
- *> returns this value as the first entry of the IWORK array, and
- *> no error message related to LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> = 1: reordering of T failed because some eigenvalues are too
- *> close to separate (the problem is very ill-conditioned);
- *> T may have been partially reordered, and WR and WI
- *> contain the eigenvalues in the same order as in T; S and
- *> SEP (if requested) are set to zero.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date April 2012
- *
- *> \ingroup doubleOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> DTRSEN first collects the selected eigenvalues by computing an
- *> orthogonal transformation Z to move them to the top left corner of T.
- *> In other words, the selected eigenvalues are the eigenvalues of T11
- *> in:
- *>
- *> Z**T * T * Z = ( T11 T12 ) n1
- *> ( 0 T22 ) n2
- *> n1 n2
- *>
- *> where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns
- *> of Z span the specified invariant subspace of T.
- *>
- *> If T has been obtained from the real Schur factorization of a matrix
- *> A = Q*T*Q**T, then the reordered real Schur factorization of A is given
- *> by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span
- *> the corresponding invariant subspace of A.
- *>
- *> The reciprocal condition number of the average of the eigenvalues of
- *> T11 may be returned in S. S lies between 0 (very badly conditioned)
- *> and 1 (very well conditioned). It is computed as follows. First we
- *> compute R so that
- *>
- *> P = ( I R ) n1
- *> ( 0 0 ) n2
- *> n1 n2
- *>
- *> is the projector on the invariant subspace associated with T11.
- *> R is the solution of the Sylvester equation:
- *>
- *> T11*R - R*T22 = T12.
- *>
- *> Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
- *> the two-norm of M. Then S is computed as the lower bound
- *>
- *> (1 + F-norm(R)**2)**(-1/2)
- *>
- *> on the reciprocal of 2-norm(P), the true reciprocal condition number.
- *> S cannot underestimate 1 / 2-norm(P) by more than a factor of
- *> sqrt(N).
- *>
- *> An approximate error bound for the computed average of the
- *> eigenvalues of T11 is
- *>
- *> EPS * norm(T) / S
- *>
- *> where EPS is the machine precision.
- *>
- *> The reciprocal condition number of the right invariant subspace
- *> spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
- *> SEP is defined as the separation of T11 and T22:
- *>
- *> sep( T11, T22 ) = sigma-min( C )
- *>
- *> where sigma-min(C) is the smallest singular value of the
- *> n1*n2-by-n1*n2 matrix
- *>
- *> C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
- *>
- *> I(m) is an m by m identity matrix, and kprod denotes the Kronecker
- *> product. We estimate sigma-min(C) by the reciprocal of an estimate of
- *> the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
- *> cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
- *>
- *> When SEP is small, small changes in T can cause large changes in
- *> the invariant subspace. An approximate bound on the maximum angular
- *> error in the computed right invariant subspace is
- *>
- *> EPS * norm(T) / SEP
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
- $ M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * April 2012
- *
- * .. Scalar Arguments ..
- CHARACTER COMPQ, JOB
- INTEGER INFO, LDQ, LDT, LIWORK, LWORK, M, N
- DOUBLE PRECISION S, SEP
- * ..
- * .. Array Arguments ..
- LOGICAL SELECT( * )
- INTEGER IWORK( * )
- DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
- $ WR( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, PAIR, SWAP, WANTBH, WANTQ, WANTS,
- $ WANTSP
- INTEGER IERR, K, KASE, KK, KS, LIWMIN, LWMIN, N1, N2,
- $ NN
- DOUBLE PRECISION EST, RNORM, SCALE
- * ..
- * .. Local Arrays ..
- INTEGER ISAVE( 3 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLANGE
- EXTERNAL LSAME, DLANGE
- * ..
- * .. External Subroutines ..
- EXTERNAL DLACN2, DLACPY, DTREXC, DTRSYL, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Decode and test the input parameters
- *
- WANTBH = LSAME( JOB, 'B' )
- WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
- WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
- WANTQ = LSAME( COMPQ, 'V' )
- *
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.WANTS .AND. .NOT.WANTSP )
- $ THEN
- INFO = -1
- ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
- INFO = -8
- ELSE
- *
- * Set M to the dimension of the specified invariant subspace,
- * and test LWORK and LIWORK.
- *
- M = 0
- PAIR = .FALSE.
- DO 10 K = 1, N
- IF( PAIR ) THEN
- PAIR = .FALSE.
- ELSE
- IF( K.LT.N ) THEN
- IF( T( K+1, K ).EQ.ZERO ) THEN
- IF( SELECT( K ) )
- $ M = M + 1
- ELSE
- PAIR = .TRUE.
- IF( SELECT( K ) .OR. SELECT( K+1 ) )
- $ M = M + 2
- END IF
- ELSE
- IF( SELECT( N ) )
- $ M = M + 1
- END IF
- END IF
- 10 CONTINUE
- *
- N1 = M
- N2 = N - M
- NN = N1*N2
- *
- IF( WANTSP ) THEN
- LWMIN = MAX( 1, 2*NN )
- LIWMIN = MAX( 1, NN )
- ELSE IF( LSAME( JOB, 'N' ) ) THEN
- LWMIN = MAX( 1, N )
- LIWMIN = 1
- ELSE IF( LSAME( JOB, 'E' ) ) THEN
- LWMIN = MAX( 1, NN )
- LIWMIN = 1
- END IF
- *
- IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -15
- ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -17
- END IF
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- WORK( 1 ) = LWMIN
- IWORK( 1 ) = LIWMIN
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DTRSEN', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( M.EQ.N .OR. M.EQ.0 ) THEN
- IF( WANTS )
- $ S = ONE
- IF( WANTSP )
- $ SEP = DLANGE( '1', N, N, T, LDT, WORK )
- GO TO 40
- END IF
- *
- * Collect the selected blocks at the top-left corner of T.
- *
- KS = 0
- PAIR = .FALSE.
- DO 20 K = 1, N
- IF( PAIR ) THEN
- PAIR = .FALSE.
- ELSE
- SWAP = SELECT( K )
- IF( K.LT.N ) THEN
- IF( T( K+1, K ).NE.ZERO ) THEN
- PAIR = .TRUE.
- SWAP = SWAP .OR. SELECT( K+1 )
- END IF
- END IF
- IF( SWAP ) THEN
- KS = KS + 1
- *
- * Swap the K-th block to position KS.
- *
- IERR = 0
- KK = K
- IF( K.NE.KS )
- $ CALL DTREXC( COMPQ, N, T, LDT, Q, LDQ, KK, KS, WORK,
- $ IERR )
- IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
- *
- * Blocks too close to swap: exit.
- *
- INFO = 1
- IF( WANTS )
- $ S = ZERO
- IF( WANTSP )
- $ SEP = ZERO
- GO TO 40
- END IF
- IF( PAIR )
- $ KS = KS + 1
- END IF
- END IF
- 20 CONTINUE
- *
- IF( WANTS ) THEN
- *
- * Solve Sylvester equation for R:
- *
- * T11*R - R*T22 = scale*T12
- *
- CALL DLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 )
- CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT, T( N1+1, N1+1 ),
- $ LDT, WORK, N1, SCALE, IERR )
- *
- * Estimate the reciprocal of the condition number of the cluster
- * of eigenvalues.
- *
- RNORM = DLANGE( 'F', N1, N2, WORK, N1, WORK )
- IF( RNORM.EQ.ZERO ) THEN
- S = ONE
- ELSE
- S = SCALE / ( SQRT( SCALE*SCALE / RNORM+RNORM )*
- $ SQRT( RNORM ) )
- END IF
- END IF
- *
- IF( WANTSP ) THEN
- *
- * Estimate sep(T11,T22).
- *
- EST = ZERO
- KASE = 0
- 30 CONTINUE
- CALL DLACN2( NN, WORK( NN+1 ), WORK, IWORK, EST, KASE, ISAVE )
- IF( KASE.NE.0 ) THEN
- IF( KASE.EQ.1 ) THEN
- *
- * Solve T11*R - R*T22 = scale*X.
- *
- CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT,
- $ T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
- $ IERR )
- ELSE
- *
- * Solve T11**T*R - R*T22**T = scale*X.
- *
- CALL DTRSYL( 'T', 'T', -1, N1, N2, T, LDT,
- $ T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
- $ IERR )
- END IF
- GO TO 30
- END IF
- *
- SEP = SCALE / EST
- END IF
- *
- 40 CONTINUE
- *
- * Store the output eigenvalues in WR and WI.
- *
- DO 50 K = 1, N
- WR( K ) = T( K, K )
- WI( K ) = ZERO
- 50 CONTINUE
- DO 60 K = 1, N - 1
- IF( T( K+1, K ).NE.ZERO ) THEN
- WI( K ) = SQRT( ABS( T( K, K+1 ) ) )*
- $ SQRT( ABS( T( K+1, K ) ) )
- WI( K+1 ) = -WI( K )
- END IF
- 60 CONTINUE
- *
- WORK( 1 ) = LWMIN
- IWORK( 1 ) = LIWMIN
- *
- RETURN
- *
- * End of DTRSEN
- *
- END
|