|
- *> \brief \b DTGSJA
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DTGSJA + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsja.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsja.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsja.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
- * LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
- * Q, LDQ, WORK, NCYCLE, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBQ, JOBU, JOBV
- * INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
- * $ NCYCLE, P
- * DOUBLE PRECISION TOLA, TOLB
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), ALPHA( * ), B( LDB, * ),
- * $ BETA( * ), Q( LDQ, * ), U( LDU, * ),
- * $ V( LDV, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DTGSJA computes the generalized singular value decomposition (GSVD)
- *> of two real upper triangular (or trapezoidal) matrices A and B.
- *>
- *> On entry, it is assumed that matrices A and B have the following
- *> forms, which may be obtained by the preprocessing subroutine DGGSVP
- *> from a general M-by-N matrix A and P-by-N matrix B:
- *>
- *> N-K-L K L
- *> A = K ( 0 A12 A13 ) if M-K-L >= 0;
- *> L ( 0 0 A23 )
- *> M-K-L ( 0 0 0 )
- *>
- *> N-K-L K L
- *> A = K ( 0 A12 A13 ) if M-K-L < 0;
- *> M-K ( 0 0 A23 )
- *>
- *> N-K-L K L
- *> B = L ( 0 0 B13 )
- *> P-L ( 0 0 0 )
- *>
- *> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
- *> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
- *> otherwise A23 is (M-K)-by-L upper trapezoidal.
- *>
- *> On exit,
- *>
- *> U**T *A*Q = D1*( 0 R ), V**T *B*Q = D2*( 0 R ),
- *>
- *> where U, V and Q are orthogonal matrices.
- *> R is a nonsingular upper triangular matrix, and D1 and D2 are
- *> ``diagonal'' matrices, which are of the following structures:
- *>
- *> If M-K-L >= 0,
- *>
- *> K L
- *> D1 = K ( I 0 )
- *> L ( 0 C )
- *> M-K-L ( 0 0 )
- *>
- *> K L
- *> D2 = L ( 0 S )
- *> P-L ( 0 0 )
- *>
- *> N-K-L K L
- *> ( 0 R ) = K ( 0 R11 R12 ) K
- *> L ( 0 0 R22 ) L
- *>
- *> where
- *>
- *> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
- *> S = diag( BETA(K+1), ... , BETA(K+L) ),
- *> C**2 + S**2 = I.
- *>
- *> R is stored in A(1:K+L,N-K-L+1:N) on exit.
- *>
- *> If M-K-L < 0,
- *>
- *> K M-K K+L-M
- *> D1 = K ( I 0 0 )
- *> M-K ( 0 C 0 )
- *>
- *> K M-K K+L-M
- *> D2 = M-K ( 0 S 0 )
- *> K+L-M ( 0 0 I )
- *> P-L ( 0 0 0 )
- *>
- *> N-K-L K M-K K+L-M
- *> ( 0 R ) = K ( 0 R11 R12 R13 )
- *> M-K ( 0 0 R22 R23 )
- *> K+L-M ( 0 0 0 R33 )
- *>
- *> where
- *> C = diag( ALPHA(K+1), ... , ALPHA(M) ),
- *> S = diag( BETA(K+1), ... , BETA(M) ),
- *> C**2 + S**2 = I.
- *>
- *> R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
- *> ( 0 R22 R23 )
- *> in B(M-K+1:L,N+M-K-L+1:N) on exit.
- *>
- *> The computation of the orthogonal transformation matrices U, V or Q
- *> is optional. These matrices may either be formed explicitly, or they
- *> may be postmultiplied into input matrices U1, V1, or Q1.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBU
- *> \verbatim
- *> JOBU is CHARACTER*1
- *> = 'U': U must contain an orthogonal matrix U1 on entry, and
- *> the product U1*U is returned;
- *> = 'I': U is initialized to the unit matrix, and the
- *> orthogonal matrix U is returned;
- *> = 'N': U is not computed.
- *> \endverbatim
- *>
- *> \param[in] JOBV
- *> \verbatim
- *> JOBV is CHARACTER*1
- *> = 'V': V must contain an orthogonal matrix V1 on entry, and
- *> the product V1*V is returned;
- *> = 'I': V is initialized to the unit matrix, and the
- *> orthogonal matrix V is returned;
- *> = 'N': V is not computed.
- *> \endverbatim
- *>
- *> \param[in] JOBQ
- *> \verbatim
- *> JOBQ is CHARACTER*1
- *> = 'Q': Q must contain an orthogonal matrix Q1 on entry, and
- *> the product Q1*Q is returned;
- *> = 'I': Q is initialized to the unit matrix, and the
- *> orthogonal matrix Q is returned;
- *> = 'N': Q is not computed.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] P
- *> \verbatim
- *> P is INTEGER
- *> The number of rows of the matrix B. P >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> \endverbatim
- *>
- *> \param[in] L
- *> \verbatim
- *> L is INTEGER
- *>
- *> K and L specify the subblocks in the input matrices A and B:
- *> A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
- *> of A and B, whose GSVD is going to be computed by DTGSJA.
- *> See Further Details.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> On entry, the M-by-N matrix A.
- *> On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
- *> matrix R or part of R. See Purpose for details.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,N)
- *> On entry, the P-by-N matrix B.
- *> On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
- *> a part of R. See Purpose for details.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,P).
- *> \endverbatim
- *>
- *> \param[in] TOLA
- *> \verbatim
- *> TOLA is DOUBLE PRECISION
- *> \endverbatim
- *>
- *> \param[in] TOLB
- *> \verbatim
- *> TOLB is DOUBLE PRECISION
- *>
- *> TOLA and TOLB are the convergence criteria for the Jacobi-
- *> Kogbetliantz iteration procedure. Generally, they are the
- *> same as used in the preprocessing step, say
- *> TOLA = max(M,N)*norm(A)*MAZHEPS,
- *> TOLB = max(P,N)*norm(B)*MAZHEPS.
- *> \endverbatim
- *>
- *> \param[out] ALPHA
- *> \verbatim
- *> ALPHA is DOUBLE PRECISION array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] BETA
- *> \verbatim
- *> BETA is DOUBLE PRECISION array, dimension (N)
- *>
- *> On exit, ALPHA and BETA contain the generalized singular
- *> value pairs of A and B;
- *> ALPHA(1:K) = 1,
- *> BETA(1:K) = 0,
- *> and if M-K-L >= 0,
- *> ALPHA(K+1:K+L) = diag(C),
- *> BETA(K+1:K+L) = diag(S),
- *> or if M-K-L < 0,
- *> ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
- *> BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
- *> Furthermore, if K+L < N,
- *> ALPHA(K+L+1:N) = 0 and
- *> BETA(K+L+1:N) = 0.
- *> \endverbatim
- *>
- *> \param[in,out] U
- *> \verbatim
- *> U is DOUBLE PRECISION array, dimension (LDU,M)
- *> On entry, if JOBU = 'U', U must contain a matrix U1 (usually
- *> the orthogonal matrix returned by DGGSVP).
- *> On exit,
- *> if JOBU = 'I', U contains the orthogonal matrix U;
- *> if JOBU = 'U', U contains the product U1*U.
- *> If JOBU = 'N', U is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of the array U. LDU >= max(1,M) if
- *> JOBU = 'U'; LDU >= 1 otherwise.
- *> \endverbatim
- *>
- *> \param[in,out] V
- *> \verbatim
- *> V is DOUBLE PRECISION array, dimension (LDV,P)
- *> On entry, if JOBV = 'V', V must contain a matrix V1 (usually
- *> the orthogonal matrix returned by DGGSVP).
- *> On exit,
- *> if JOBV = 'I', V contains the orthogonal matrix V;
- *> if JOBV = 'V', V contains the product V1*V.
- *> If JOBV = 'N', V is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDV
- *> \verbatim
- *> LDV is INTEGER
- *> The leading dimension of the array V. LDV >= max(1,P) if
- *> JOBV = 'V'; LDV >= 1 otherwise.
- *> \endverbatim
- *>
- *> \param[in,out] Q
- *> \verbatim
- *> Q is DOUBLE PRECISION array, dimension (LDQ,N)
- *> On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
- *> the orthogonal matrix returned by DGGSVP).
- *> On exit,
- *> if JOBQ = 'I', Q contains the orthogonal matrix Q;
- *> if JOBQ = 'Q', Q contains the product Q1*Q.
- *> If JOBQ = 'N', Q is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q. LDQ >= max(1,N) if
- *> JOBQ = 'Q'; LDQ >= 1 otherwise.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] NCYCLE
- *> \verbatim
- *> NCYCLE is INTEGER
- *> The number of cycles required for convergence.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> = 1: the procedure does not converge after MAXIT cycles.
- *> \endverbatim
- *>
- *> \verbatim
- *> Internal Parameters
- *> ===================
- *>
- *> MAXIT INTEGER
- *> MAXIT specifies the total loops that the iterative procedure
- *> may take. If after MAXIT cycles, the routine fails to
- *> converge, we return INFO = 1.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup doubleOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> DTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
- *> min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
- *> matrix B13 to the form:
- *>
- *> U1**T *A13*Q1 = C1*R1; V1**T *B13*Q1 = S1*R1,
- *>
- *> where U1, V1 and Q1 are orthogonal matrix, and Z**T is the transpose
- *> of Z. C1 and S1 are diagonal matrices satisfying
- *>
- *> C1**2 + S1**2 = I,
- *>
- *> and R1 is an L-by-L nonsingular upper triangular matrix.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE DTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
- $ LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
- $ Q, LDQ, WORK, NCYCLE, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER JOBQ, JOBU, JOBV
- INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
- $ NCYCLE, P
- DOUBLE PRECISION TOLA, TOLB
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), ALPHA( * ), B( LDB, * ),
- $ BETA( * ), Q( LDQ, * ), U( LDU, * ),
- $ V( LDV, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- INTEGER MAXIT
- PARAMETER ( MAXIT = 40 )
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- *
- LOGICAL INITQ, INITU, INITV, UPPER, WANTQ, WANTU, WANTV
- INTEGER I, J, KCYCLE
- DOUBLE PRECISION A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, ERROR,
- $ GAMMA, RWK, SNQ, SNU, SNV, SSMIN
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL DCOPY, DLAGS2, DLAPLL, DLARTG, DLASET, DROT,
- $ DSCAL, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Decode and test the input parameters
- *
- INITU = LSAME( JOBU, 'I' )
- WANTU = INITU .OR. LSAME( JOBU, 'U' )
- *
- INITV = LSAME( JOBV, 'I' )
- WANTV = INITV .OR. LSAME( JOBV, 'V' )
- *
- INITQ = LSAME( JOBQ, 'I' )
- WANTQ = INITQ .OR. LSAME( JOBQ, 'Q' )
- *
- INFO = 0
- IF( .NOT.( INITU .OR. WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( INITV .OR. WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
- INFO = -2
- ELSE IF( .NOT.( INITQ .OR. WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
- INFO = -3
- ELSE IF( M.LT.0 ) THEN
- INFO = -4
- ELSE IF( P.LT.0 ) THEN
- INFO = -5
- ELSE IF( N.LT.0 ) THEN
- INFO = -6
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -10
- ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
- INFO = -12
- ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
- INFO = -18
- ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
- INFO = -20
- ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
- INFO = -22
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DTGSJA', -INFO )
- RETURN
- END IF
- *
- * Initialize U, V and Q, if necessary
- *
- IF( INITU )
- $ CALL DLASET( 'Full', M, M, ZERO, ONE, U, LDU )
- IF( INITV )
- $ CALL DLASET( 'Full', P, P, ZERO, ONE, V, LDV )
- IF( INITQ )
- $ CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
- *
- * Loop until convergence
- *
- UPPER = .FALSE.
- DO 40 KCYCLE = 1, MAXIT
- *
- UPPER = .NOT.UPPER
- *
- DO 20 I = 1, L - 1
- DO 10 J = I + 1, L
- *
- A1 = ZERO
- A2 = ZERO
- A3 = ZERO
- IF( K+I.LE.M )
- $ A1 = A( K+I, N-L+I )
- IF( K+J.LE.M )
- $ A3 = A( K+J, N-L+J )
- *
- B1 = B( I, N-L+I )
- B3 = B( J, N-L+J )
- *
- IF( UPPER ) THEN
- IF( K+I.LE.M )
- $ A2 = A( K+I, N-L+J )
- B2 = B( I, N-L+J )
- ELSE
- IF( K+J.LE.M )
- $ A2 = A( K+J, N-L+I )
- B2 = B( J, N-L+I )
- END IF
- *
- CALL DLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU,
- $ CSV, SNV, CSQ, SNQ )
- *
- * Update (K+I)-th and (K+J)-th rows of matrix A: U**T *A
- *
- IF( K+J.LE.M )
- $ CALL DROT( L, A( K+J, N-L+1 ), LDA, A( K+I, N-L+1 ),
- $ LDA, CSU, SNU )
- *
- * Update I-th and J-th rows of matrix B: V**T *B
- *
- CALL DROT( L, B( J, N-L+1 ), LDB, B( I, N-L+1 ), LDB,
- $ CSV, SNV )
- *
- * Update (N-L+I)-th and (N-L+J)-th columns of matrices
- * A and B: A*Q and B*Q
- *
- CALL DROT( MIN( K+L, M ), A( 1, N-L+J ), 1,
- $ A( 1, N-L+I ), 1, CSQ, SNQ )
- *
- CALL DROT( L, B( 1, N-L+J ), 1, B( 1, N-L+I ), 1, CSQ,
- $ SNQ )
- *
- IF( UPPER ) THEN
- IF( K+I.LE.M )
- $ A( K+I, N-L+J ) = ZERO
- B( I, N-L+J ) = ZERO
- ELSE
- IF( K+J.LE.M )
- $ A( K+J, N-L+I ) = ZERO
- B( J, N-L+I ) = ZERO
- END IF
- *
- * Update orthogonal matrices U, V, Q, if desired.
- *
- IF( WANTU .AND. K+J.LE.M )
- $ CALL DROT( M, U( 1, K+J ), 1, U( 1, K+I ), 1, CSU,
- $ SNU )
- *
- IF( WANTV )
- $ CALL DROT( P, V( 1, J ), 1, V( 1, I ), 1, CSV, SNV )
- *
- IF( WANTQ )
- $ CALL DROT( N, Q( 1, N-L+J ), 1, Q( 1, N-L+I ), 1, CSQ,
- $ SNQ )
- *
- 10 CONTINUE
- 20 CONTINUE
- *
- IF( .NOT.UPPER ) THEN
- *
- * The matrices A13 and B13 were lower triangular at the start
- * of the cycle, and are now upper triangular.
- *
- * Convergence test: test the parallelism of the corresponding
- * rows of A and B.
- *
- ERROR = ZERO
- DO 30 I = 1, MIN( L, M-K )
- CALL DCOPY( L-I+1, A( K+I, N-L+I ), LDA, WORK, 1 )
- CALL DCOPY( L-I+1, B( I, N-L+I ), LDB, WORK( L+1 ), 1 )
- CALL DLAPLL( L-I+1, WORK, 1, WORK( L+1 ), 1, SSMIN )
- ERROR = MAX( ERROR, SSMIN )
- 30 CONTINUE
- *
- IF( ABS( ERROR ).LE.MIN( TOLA, TOLB ) )
- $ GO TO 50
- END IF
- *
- * End of cycle loop
- *
- 40 CONTINUE
- *
- * The algorithm has not converged after MAXIT cycles.
- *
- INFO = 1
- GO TO 100
- *
- 50 CONTINUE
- *
- * If ERROR <= MIN(TOLA,TOLB), then the algorithm has converged.
- * Compute the generalized singular value pairs (ALPHA, BETA), and
- * set the triangular matrix R to array A.
- *
- DO 60 I = 1, K
- ALPHA( I ) = ONE
- BETA( I ) = ZERO
- 60 CONTINUE
- *
- DO 70 I = 1, MIN( L, M-K )
- *
- A1 = A( K+I, N-L+I )
- B1 = B( I, N-L+I )
- *
- IF( A1.NE.ZERO ) THEN
- GAMMA = B1 / A1
- *
- * change sign if necessary
- *
- IF( GAMMA.LT.ZERO ) THEN
- CALL DSCAL( L-I+1, -ONE, B( I, N-L+I ), LDB )
- IF( WANTV )
- $ CALL DSCAL( P, -ONE, V( 1, I ), 1 )
- END IF
- *
- CALL DLARTG( ABS( GAMMA ), ONE, BETA( K+I ), ALPHA( K+I ),
- $ RWK )
- *
- IF( ALPHA( K+I ).GE.BETA( K+I ) ) THEN
- CALL DSCAL( L-I+1, ONE / ALPHA( K+I ), A( K+I, N-L+I ),
- $ LDA )
- ELSE
- CALL DSCAL( L-I+1, ONE / BETA( K+I ), B( I, N-L+I ),
- $ LDB )
- CALL DCOPY( L-I+1, B( I, N-L+I ), LDB, A( K+I, N-L+I ),
- $ LDA )
- END IF
- *
- ELSE
- *
- ALPHA( K+I ) = ZERO
- BETA( K+I ) = ONE
- CALL DCOPY( L-I+1, B( I, N-L+I ), LDB, A( K+I, N-L+I ),
- $ LDA )
- *
- END IF
- *
- 70 CONTINUE
- *
- * Post-assignment
- *
- DO 80 I = M + 1, K + L
- ALPHA( I ) = ZERO
- BETA( I ) = ONE
- 80 CONTINUE
- *
- IF( K+L.LT.N ) THEN
- DO 90 I = K + L + 1, N
- ALPHA( I ) = ZERO
- BETA( I ) = ZERO
- 90 CONTINUE
- END IF
- *
- 100 CONTINUE
- NCYCLE = KCYCLE
- RETURN
- *
- * End of DTGSJA
- *
- END
|