|
- *> \brief \b DSYSVXX
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DSYSVXX + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsysvxx.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsysvxx.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsysvxx.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DSYSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV,
- * EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
- * N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
- * NPARAMS, PARAMS, WORK, IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER EQUED, FACT, UPLO
- * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
- * $ N_ERR_BNDS
- * DOUBLE PRECISION RCOND, RPVGRW
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * ), IWORK( * )
- * DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
- * $ X( LDX, * ), WORK( * )
- * DOUBLE PRECISION S( * ), PARAMS( * ), BERR( * ),
- * $ ERR_BNDS_NORM( NRHS, * ),
- * $ ERR_BNDS_COMP( NRHS, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DSYSVXX uses the diagonal pivoting factorization to compute the
- *> solution to a double precision system of linear equations A * X = B, where A
- *> is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices.
- *>
- *> If requested, both normwise and maximum componentwise error bounds
- *> are returned. DSYSVXX will return a solution with a tiny
- *> guaranteed error (O(eps) where eps is the working machine
- *> precision) unless the matrix is very ill-conditioned, in which
- *> case a warning is returned. Relevant condition numbers also are
- *> calculated and returned.
- *>
- *> DSYSVXX accepts user-provided factorizations and equilibration
- *> factors; see the definitions of the FACT and EQUED options.
- *> Solving with refinement and using a factorization from a previous
- *> DSYSVXX call will also produce a solution with either O(eps)
- *> errors or warnings, but we cannot make that claim for general
- *> user-provided factorizations and equilibration factors if they
- *> differ from what DSYSVXX would itself produce.
- *> \endverbatim
- *
- *> \par Description:
- * =================
- *>
- *> \verbatim
- *>
- *> The following steps are performed:
- *>
- *> 1. If FACT = 'E', double precision scaling factors are computed to equilibrate
- *> the system:
- *>
- *> diag(S)*A*diag(S) *inv(diag(S))*X = diag(S)*B
- *>
- *> Whether or not the system will be equilibrated depends on the
- *> scaling of the matrix A, but if equilibration is used, A is
- *> overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
- *>
- *> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor
- *> the matrix A (after equilibration if FACT = 'E') as
- *>
- *> A = U * D * U**T, if UPLO = 'U', or
- *> A = L * D * L**T, if UPLO = 'L',
- *>
- *> where U (or L) is a product of permutation and unit upper (lower)
- *> triangular matrices, and D is symmetric and block diagonal with
- *> 1-by-1 and 2-by-2 diagonal blocks.
- *>
- *> 3. If some D(i,i)=0, so that D is exactly singular, then the
- *> routine returns with INFO = i. Otherwise, the factored form of A
- *> is used to estimate the condition number of the matrix A (see
- *> argument RCOND). If the reciprocal of the condition number is
- *> less than machine precision, the routine still goes on to solve
- *> for X and compute error bounds as described below.
- *>
- *> 4. The system of equations is solved for X using the factored form
- *> of A.
- *>
- *> 5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
- *> the routine will use iterative refinement to try to get a small
- *> error and error bounds. Refinement calculates the residual to at
- *> least twice the working precision.
- *>
- *> 6. If equilibration was used, the matrix X is premultiplied by
- *> diag(R) so that it solves the original system before
- *> equilibration.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \verbatim
- *> Some optional parameters are bundled in the PARAMS array. These
- *> settings determine how refinement is performed, but often the
- *> defaults are acceptable. If the defaults are acceptable, users
- *> can pass NPARAMS = 0 which prevents the source code from accessing
- *> the PARAMS argument.
- *> \endverbatim
- *>
- *> \param[in] FACT
- *> \verbatim
- *> FACT is CHARACTER*1
- *> Specifies whether or not the factored form of the matrix A is
- *> supplied on entry, and if not, whether the matrix A should be
- *> equilibrated before it is factored.
- *> = 'F': On entry, AF and IPIV contain the factored form of A.
- *> If EQUED is not 'N', the matrix A has been
- *> equilibrated with scaling factors given by S.
- *> A, AF, and IPIV are not modified.
- *> = 'N': The matrix A will be copied to AF and factored.
- *> = 'E': The matrix A will be equilibrated if necessary, then
- *> copied to AF and factored.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of linear equations, i.e., the order of the
- *> matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices B and X. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> The symmetric matrix A. If UPLO = 'U', the leading N-by-N
- *> upper triangular part of A contains the upper triangular
- *> part of the matrix A, and the strictly lower triangular
- *> part of A is not referenced. If UPLO = 'L', the leading
- *> N-by-N lower triangular part of A contains the lower
- *> triangular part of the matrix A, and the strictly upper
- *> triangular part of A is not referenced.
- *>
- *> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
- *> diag(S)*A*diag(S).
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] AF
- *> \verbatim
- *> AF is DOUBLE PRECISION array, dimension (LDAF,N)
- *> If FACT = 'F', then AF is an input argument and on entry
- *> contains the block diagonal matrix D and the multipliers
- *> used to obtain the factor U or L from the factorization A =
- *> U*D*U**T or A = L*D*L**T as computed by DSYTRF.
- *>
- *> If FACT = 'N', then AF is an output argument and on exit
- *> returns the block diagonal matrix D and the multipliers
- *> used to obtain the factor U or L from the factorization A =
- *> U*D*U**T or A = L*D*L**T.
- *> \endverbatim
- *>
- *> \param[in] LDAF
- *> \verbatim
- *> LDAF is INTEGER
- *> The leading dimension of the array AF. LDAF >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> If FACT = 'F', then IPIV is an input argument and on entry
- *> contains details of the interchanges and the block
- *> structure of D, as determined by DSYTRF. If IPIV(k) > 0,
- *> then rows and columns k and IPIV(k) were interchanged and
- *> D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and
- *> IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and
- *> -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
- *> diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
- *> then rows and columns k+1 and -IPIV(k) were interchanged
- *> and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
- *>
- *> If FACT = 'N', then IPIV is an output argument and on exit
- *> contains details of the interchanges and the block
- *> structure of D, as determined by DSYTRF.
- *> \endverbatim
- *>
- *> \param[in,out] EQUED
- *> \verbatim
- *> EQUED is CHARACTER*1
- *> Specifies the form of equilibration that was done.
- *> = 'N': No equilibration (always true if FACT = 'N').
- *> = 'Y': Both row and column equilibration, i.e., A has been
- *> replaced by diag(S) * A * diag(S).
- *> EQUED is an input argument if FACT = 'F'; otherwise, it is an
- *> output argument.
- *> \endverbatim
- *>
- *> \param[in,out] S
- *> \verbatim
- *> S is DOUBLE PRECISION array, dimension (N)
- *> The scale factors for A. If EQUED = 'Y', A is multiplied on
- *> the left and right by diag(S). S is an input argument if FACT =
- *> 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED
- *> = 'Y', each element of S must be positive. If S is output, each
- *> element of S is a power of the radix. If S is input, each element
- *> of S should be a power of the radix to ensure a reliable solution
- *> and error estimates. Scaling by powers of the radix does not cause
- *> rounding errors unless the result underflows or overflows.
- *> Rounding errors during scaling lead to refining with a matrix that
- *> is not equivalent to the input matrix, producing error estimates
- *> that may not be reliable.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
- *> On entry, the N-by-NRHS right hand side matrix B.
- *> On exit,
- *> if EQUED = 'N', B is not modified;
- *> if EQUED = 'Y', B is overwritten by diag(S)*B;
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
- *> If INFO = 0, the N-by-NRHS solution matrix X to the original
- *> system of equations. Note that A and B are modified on exit if
- *> EQUED .ne. 'N', and the solution to the equilibrated system is
- *> inv(diag(S))*X.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is DOUBLE PRECISION
- *> Reciprocal scaled condition number. This is an estimate of the
- *> reciprocal Skeel condition number of the matrix A after
- *> equilibration (if done). If this is less than the machine
- *> precision (in particular, if it is zero), the matrix is singular
- *> to working precision. Note that the error may still be small even
- *> if this number is very small and the matrix appears ill-
- *> conditioned.
- *> \endverbatim
- *>
- *> \param[out] RPVGRW
- *> \verbatim
- *> RPVGRW is DOUBLE PRECISION
- *> Reciprocal pivot growth. On exit, this contains the reciprocal
- *> pivot growth factor norm(A)/norm(U). The "max absolute element"
- *> norm is used. If this is much less than 1, then the stability of
- *> the LU factorization of the (equilibrated) matrix A could be poor.
- *> This also means that the solution X, estimated condition numbers,
- *> and error bounds could be unreliable. If factorization fails with
- *> 0<INFO<=N, then this contains the reciprocal pivot growth factor
- *> for the leading INFO columns of A.
- *> \endverbatim
- *>
- *> \param[out] BERR
- *> \verbatim
- *> BERR is DOUBLE PRECISION array, dimension (NRHS)
- *> Componentwise relative backward error. This is the
- *> componentwise relative backward error of each solution vector X(j)
- *> (i.e., the smallest relative change in any element of A or B that
- *> makes X(j) an exact solution).
- *> \endverbatim
- *>
- *> \param[in] N_ERR_BNDS
- *> \verbatim
- *> N_ERR_BNDS is INTEGER
- *> Number of error bounds to return for each right hand side
- *> and each type (normwise or componentwise). See ERR_BNDS_NORM and
- *> ERR_BNDS_COMP below.
- *> \endverbatim
- *>
- *> \param[out] ERR_BNDS_NORM
- *> \verbatim
- *> ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
- *> For each right-hand side, this array contains information about
- *> various error bounds and condition numbers corresponding to the
- *> normwise relative error, which is defined as follows:
- *>
- *> Normwise relative error in the ith solution vector:
- *> max_j (abs(XTRUE(j,i) - X(j,i)))
- *> ------------------------------
- *> max_j abs(X(j,i))
- *>
- *> The array is indexed by the type of error information as described
- *> below. There currently are up to three pieces of information
- *> returned.
- *>
- *> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
- *> right-hand side.
- *>
- *> The second index in ERR_BNDS_NORM(:,err) contains the following
- *> three fields:
- *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
- *> reciprocal condition number is less than the threshold
- *> sqrt(n) * dlamch('Epsilon').
- *>
- *> err = 2 "Guaranteed" error bound: The estimated forward error,
- *> almost certainly within a factor of 10 of the true error
- *> so long as the next entry is greater than the threshold
- *> sqrt(n) * dlamch('Epsilon'). This error bound should only
- *> be trusted if the previous boolean is true.
- *>
- *> err = 3 Reciprocal condition number: Estimated normwise
- *> reciprocal condition number. Compared with the threshold
- *> sqrt(n) * dlamch('Epsilon') to determine if the error
- *> estimate is "guaranteed". These reciprocal condition
- *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
- *> appropriately scaled matrix Z.
- *> Let Z = S*A, where S scales each row by a power of the
- *> radix so all absolute row sums of Z are approximately 1.
- *>
- *> See Lapack Working Note 165 for further details and extra
- *> cautions.
- *> \endverbatim
- *>
- *> \param[out] ERR_BNDS_COMP
- *> \verbatim
- *> ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
- *> For each right-hand side, this array contains information about
- *> various error bounds and condition numbers corresponding to the
- *> componentwise relative error, which is defined as follows:
- *>
- *> Componentwise relative error in the ith solution vector:
- *> abs(XTRUE(j,i) - X(j,i))
- *> max_j ----------------------
- *> abs(X(j,i))
- *>
- *> The array is indexed by the right-hand side i (on which the
- *> componentwise relative error depends), and the type of error
- *> information as described below. There currently are up to three
- *> pieces of information returned for each right-hand side. If
- *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
- *> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
- *> the first (:,N_ERR_BNDS) entries are returned.
- *>
- *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
- *> right-hand side.
- *>
- *> The second index in ERR_BNDS_COMP(:,err) contains the following
- *> three fields:
- *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
- *> reciprocal condition number is less than the threshold
- *> sqrt(n) * dlamch('Epsilon').
- *>
- *> err = 2 "Guaranteed" error bound: The estimated forward error,
- *> almost certainly within a factor of 10 of the true error
- *> so long as the next entry is greater than the threshold
- *> sqrt(n) * dlamch('Epsilon'). This error bound should only
- *> be trusted if the previous boolean is true.
- *>
- *> err = 3 Reciprocal condition number: Estimated componentwise
- *> reciprocal condition number. Compared with the threshold
- *> sqrt(n) * dlamch('Epsilon') to determine if the error
- *> estimate is "guaranteed". These reciprocal condition
- *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
- *> appropriately scaled matrix Z.
- *> Let Z = S*(A*diag(x)), where x is the solution for the
- *> current right-hand side and S scales each row of
- *> A*diag(x) by a power of the radix so all absolute row
- *> sums of Z are approximately 1.
- *>
- *> See Lapack Working Note 165 for further details and extra
- *> cautions.
- *> \endverbatim
- *>
- *> \param[in] NPARAMS
- *> \verbatim
- *> NPARAMS is INTEGER
- *> Specifies the number of parameters set in PARAMS. If <= 0, the
- *> PARAMS array is never referenced and default values are used.
- *> \endverbatim
- *>
- *> \param[in,out] PARAMS
- *> \verbatim
- *> PARAMS is DOUBLE PRECISION array, dimension (NPARAMS)
- *> Specifies algorithm parameters. If an entry is < 0.0, then
- *> that entry will be filled with default value used for that
- *> parameter. Only positions up to NPARAMS are accessed; defaults
- *> are used for higher-numbered parameters.
- *>
- *> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
- *> refinement or not.
- *> Default: 1.0D+0
- *> = 0.0: No refinement is performed, and no error bounds are
- *> computed.
- *> = 1.0: Use the extra-precise refinement algorithm.
- *> (other values are reserved for future use)
- *>
- *> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
- *> computations allowed for refinement.
- *> Default: 10
- *> Aggressive: Set to 100 to permit convergence using approximate
- *> factorizations or factorizations other than LU. If
- *> the factorization uses a technique other than
- *> Gaussian elimination, the guarantees in
- *> err_bnds_norm and err_bnds_comp may no longer be
- *> trustworthy.
- *>
- *> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
- *> will attempt to find a solution with small componentwise
- *> relative error in the double-precision algorithm. Positive
- *> is true, 0.0 is false.
- *> Default: 1.0 (attempt componentwise convergence)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (4*N)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: Successful exit. The solution to every right-hand side is
- *> guaranteed.
- *> < 0: If INFO = -i, the i-th argument had an illegal value
- *> > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
- *> has been completed, but the factor U is exactly singular, so
- *> the solution and error bounds could not be computed. RCOND = 0
- *> is returned.
- *> = N+J: The solution corresponding to the Jth right-hand side is
- *> not guaranteed. The solutions corresponding to other right-
- *> hand sides K with K > J may not be guaranteed as well, but
- *> only the first such right-hand side is reported. If a small
- *> componentwise error is not requested (PARAMS(3) = 0.0) then
- *> the Jth right-hand side is the first with a normwise error
- *> bound that is not guaranteed (the smallest J such
- *> that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
- *> the Jth right-hand side is the first with either a normwise or
- *> componentwise error bound that is not guaranteed (the smallest
- *> J such that either ERR_BNDS_NORM(J,1) = 0.0 or
- *> ERR_BNDS_COMP(J,1) = 0.0). See the definition of
- *> ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
- *> about all of the right-hand sides check ERR_BNDS_NORM or
- *> ERR_BNDS_COMP.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup doubleSYsolve
- *
- * =====================================================================
- SUBROUTINE DSYSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV,
- $ EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
- $ N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
- $ NPARAMS, PARAMS, WORK, IWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER EQUED, FACT, UPLO
- INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
- $ N_ERR_BNDS
- DOUBLE PRECISION RCOND, RPVGRW
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * ), IWORK( * )
- DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
- $ X( LDX, * ), WORK( * )
- DOUBLE PRECISION S( * ), PARAMS( * ), BERR( * ),
- $ ERR_BNDS_NORM( NRHS, * ),
- $ ERR_BNDS_COMP( NRHS, * )
- * ..
- *
- * ==================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
- INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
- INTEGER CMP_ERR_I, PIV_GROWTH_I
- PARAMETER ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
- $ BERR_I = 3 )
- PARAMETER ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
- PARAMETER ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
- $ PIV_GROWTH_I = 9 )
- * ..
- * .. Local Scalars ..
- LOGICAL EQUIL, NOFACT, RCEQU
- INTEGER INFEQU, J
- DOUBLE PRECISION AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
- * ..
- * .. External Functions ..
- EXTERNAL LSAME, DLAMCH, DLA_SYRPVGRW
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, DLA_SYRPVGRW
- * ..
- * .. External Subroutines ..
- EXTERNAL DSYEQUB, DSYTRF, DSYTRS,
- $ DLACPY, DLAQSY, XERBLA, DLASCL2, DSYRFSX
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- NOFACT = LSAME( FACT, 'N' )
- EQUIL = LSAME( FACT, 'E' )
- SMLNUM = DLAMCH( 'Safe minimum' )
- BIGNUM = ONE / SMLNUM
- IF( NOFACT .OR. EQUIL ) THEN
- EQUED = 'N'
- RCEQU = .FALSE.
- ELSE
- RCEQU = LSAME( EQUED, 'Y' )
- ENDIF
- *
- * Default is failure. If an input parameter is wrong or
- * factorization fails, make everything look horrible. Only the
- * pivot growth is set here, the rest is initialized in DSYRFSX.
- *
- RPVGRW = ZERO
- *
- * Test the input parameters. PARAMS is not tested until DSYRFSX.
- *
- IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
- $ LSAME( FACT, 'F' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.LSAME(UPLO, 'U') .AND.
- $ .NOT.LSAME(UPLO, 'L') ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
- INFO = -8
- ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
- $ ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
- INFO = -10
- ELSE
- IF ( RCEQU ) THEN
- SMIN = BIGNUM
- SMAX = ZERO
- DO 10 J = 1, N
- SMIN = MIN( SMIN, S( J ) )
- SMAX = MAX( SMAX, S( J ) )
- 10 CONTINUE
- IF( SMIN.LE.ZERO ) THEN
- INFO = -11
- ELSE IF( N.GT.0 ) THEN
- SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
- ELSE
- SCOND = ONE
- END IF
- END IF
- IF( INFO.EQ.0 ) THEN
- IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -13
- ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
- INFO = -15
- END IF
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DSYSVXX', -INFO )
- RETURN
- END IF
- *
- IF( EQUIL ) THEN
- *
- * Compute row and column scalings to equilibrate the matrix A.
- *
- CALL DSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFEQU )
- IF( INFEQU.EQ.0 ) THEN
- *
- * Equilibrate the matrix.
- *
- CALL DLAQSY( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
- RCEQU = LSAME( EQUED, 'Y' )
- END IF
- END IF
- *
- * Scale the right-hand side.
- *
- IF( RCEQU ) CALL DLASCL2( N, NRHS, S, B, LDB )
- *
- IF( NOFACT .OR. EQUIL ) THEN
- *
- * Compute the LDL^T or UDU^T factorization of A.
- *
- CALL DLACPY( UPLO, N, N, A, LDA, AF, LDAF )
- CALL DSYTRF( UPLO, N, AF, LDAF, IPIV, WORK, 5*MAX(1,N), INFO )
- *
- * Return if INFO is non-zero.
- *
- IF( INFO.GT.0 ) THEN
- *
- * Pivot in column INFO is exactly 0
- * Compute the reciprocal pivot growth factor of the
- * leading rank-deficient INFO columns of A.
- *
- IF ( N.GT.0 )
- $ RPVGRW = DLA_SYRPVGRW(UPLO, N, INFO, A, LDA, AF,
- $ LDAF, IPIV, WORK )
- RETURN
- END IF
- END IF
- *
- * Compute the reciprocal pivot growth factor RPVGRW.
- *
- IF ( N.GT.0 )
- $ RPVGRW = DLA_SYRPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF,
- $ IPIV, WORK )
- *
- * Compute the solution matrix X.
- *
- CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
- CALL DSYTRS( UPLO, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
- *
- * Use iterative refinement to improve the computed solution and
- * compute error bounds and backward error estimates for it.
- *
- CALL DSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
- $ S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM,
- $ ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO )
- *
- * Scale solutions.
- *
- IF ( RCEQU ) THEN
- CALL DLASCL2 ( N, NRHS, S, X, LDX )
- END IF
- *
- RETURN
- *
- * End of DSYSVXX
- *
- END
|