|
- *> \brief \b DSYGVX
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DSYGVX + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygvx.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygvx.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygvx.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DSYGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
- * VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
- * LWORK, IWORK, IFAIL, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, RANGE, UPLO
- * INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
- * DOUBLE PRECISION ABSTOL, VL, VU
- * ..
- * .. Array Arguments ..
- * INTEGER IFAIL( * ), IWORK( * )
- * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), W( * ), WORK( * ),
- * $ Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DSYGVX computes selected eigenvalues, and optionally, eigenvectors
- *> of a real generalized symmetric-definite eigenproblem, of the form
- *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
- *> and B are assumed to be symmetric and B is also positive definite.
- *> Eigenvalues and eigenvectors can be selected by specifying either a
- *> range of values or a range of indices for the desired eigenvalues.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] ITYPE
- *> \verbatim
- *> ITYPE is INTEGER
- *> Specifies the problem type to be solved:
- *> = 1: A*x = (lambda)*B*x
- *> = 2: A*B*x = (lambda)*x
- *> = 3: B*A*x = (lambda)*x
- *> \endverbatim
- *>
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] RANGE
- *> \verbatim
- *> RANGE is CHARACTER*1
- *> = 'A': all eigenvalues will be found.
- *> = 'V': all eigenvalues in the half-open interval (VL,VU]
- *> will be found.
- *> = 'I': the IL-th through IU-th eigenvalues will be found.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A and B are stored;
- *> = 'L': Lower triangle of A and B are stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix pencil (A,B). N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA, N)
- *> On entry, the symmetric matrix A. If UPLO = 'U', the
- *> leading N-by-N upper triangular part of A contains the
- *> upper triangular part of the matrix A. If UPLO = 'L',
- *> the leading N-by-N lower triangular part of A contains
- *> the lower triangular part of the matrix A.
- *>
- *> On exit, the lower triangle (if UPLO='L') or the upper
- *> triangle (if UPLO='U') of A, including the diagonal, is
- *> destroyed.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB, N)
- *> On entry, the symmetric matrix B. If UPLO = 'U', the
- *> leading N-by-N upper triangular part of B contains the
- *> upper triangular part of the matrix B. If UPLO = 'L',
- *> the leading N-by-N lower triangular part of B contains
- *> the lower triangular part of the matrix B.
- *>
- *> On exit, if INFO <= N, the part of B containing the matrix is
- *> overwritten by the triangular factor U or L from the Cholesky
- *> factorization B = U**T*U or B = L*L**T.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] VL
- *> \verbatim
- *> VL is DOUBLE PRECISION
- *> If RANGE='V', the lower bound of the interval to
- *> be searched for eigenvalues. VL < VU.
- *> Not referenced if RANGE = 'A' or 'I'.
- *> \endverbatim
- *>
- *> \param[in] VU
- *> \verbatim
- *> VU is DOUBLE PRECISION
- *> If RANGE='V', the upper bound of the interval to
- *> be searched for eigenvalues. VL < VU.
- *> Not referenced if RANGE = 'A' or 'I'.
- *> \endverbatim
- *>
- *> \param[in] IL
- *> \verbatim
- *> IL is INTEGER
- *> If RANGE='I', the index of the
- *> smallest eigenvalue to be returned.
- *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
- *> Not referenced if RANGE = 'A' or 'V'.
- *> \endverbatim
- *>
- *> \param[in] IU
- *> \verbatim
- *> IU is INTEGER
- *> If RANGE='I', the index of the
- *> largest eigenvalue to be returned.
- *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
- *> Not referenced if RANGE = 'A' or 'V'.
- *> \endverbatim
- *>
- *> \param[in] ABSTOL
- *> \verbatim
- *> ABSTOL is DOUBLE PRECISION
- *> The absolute error tolerance for the eigenvalues.
- *> An approximate eigenvalue is accepted as converged
- *> when it is determined to lie in an interval [a,b]
- *> of width less than or equal to
- *>
- *> ABSTOL + EPS * max( |a|,|b| ) ,
- *>
- *> where EPS is the machine precision. If ABSTOL is less than
- *> or equal to zero, then EPS*|T| will be used in its place,
- *> where |T| is the 1-norm of the tridiagonal matrix obtained
- *> by reducing C to tridiagonal form, where C is the symmetric
- *> matrix of the standard symmetric problem to which the
- *> generalized problem is transformed.
- *>
- *> Eigenvalues will be computed most accurately when ABSTOL is
- *> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
- *> If this routine returns with INFO>0, indicating that some
- *> eigenvectors did not converge, try setting ABSTOL to
- *> 2*DLAMCH('S').
- *> \endverbatim
- *>
- *> \param[out] M
- *> \verbatim
- *> M is INTEGER
- *> The total number of eigenvalues found. 0 <= M <= N.
- *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is DOUBLE PRECISION array, dimension (N)
- *> On normal exit, the first M elements contain the selected
- *> eigenvalues in ascending order.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
- *> If JOBZ = 'N', then Z is not referenced.
- *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
- *> contain the orthonormal eigenvectors of the matrix A
- *> corresponding to the selected eigenvalues, with the i-th
- *> column of Z holding the eigenvector associated with W(i).
- *> The eigenvectors are normalized as follows:
- *> if ITYPE = 1 or 2, Z**T*B*Z = I;
- *> if ITYPE = 3, Z**T*inv(B)*Z = I.
- *>
- *> If an eigenvector fails to converge, then that column of Z
- *> contains the latest approximation to the eigenvector, and the
- *> index of the eigenvector is returned in IFAIL.
- *> Note: the user must ensure that at least max(1,M) columns are
- *> supplied in the array Z; if RANGE = 'V', the exact value of M
- *> is not known in advance and an upper bound must be used.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1, and if
- *> JOBZ = 'V', LDZ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The length of the array WORK. LWORK >= max(1,8*N).
- *> For optimal efficiency, LWORK >= (NB+3)*N,
- *> where NB is the blocksize for DSYTRD returned by ILAENV.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (5*N)
- *> \endverbatim
- *>
- *> \param[out] IFAIL
- *> \verbatim
- *> IFAIL is INTEGER array, dimension (N)
- *> If JOBZ = 'V', then if INFO = 0, the first M elements of
- *> IFAIL are zero. If INFO > 0, then IFAIL contains the
- *> indices of the eigenvectors that failed to converge.
- *> If JOBZ = 'N', then IFAIL is not referenced.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: DPOTRF or DSYEVX returned an error code:
- *> <= N: if INFO = i, DSYEVX failed to converge;
- *> i eigenvectors failed to converge. Their indices
- *> are stored in array IFAIL.
- *> > N: if INFO = N + i, for 1 <= i <= N, then the leading
- *> minor of order i of B is not positive definite.
- *> The factorization of B could not be completed and
- *> no eigenvalues or eigenvectors were computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date June 2016
- *
- *> \ingroup doubleSYeigen
- *
- *> \par Contributors:
- * ==================
- *>
- *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
- *
- * =====================================================================
- SUBROUTINE DSYGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
- $ VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
- $ LWORK, IWORK, IFAIL, INFO )
- *
- * -- LAPACK driver routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * June 2016
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, RANGE, UPLO
- INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
- DOUBLE PRECISION ABSTOL, VL, VU
- * ..
- * .. Array Arguments ..
- INTEGER IFAIL( * ), IWORK( * )
- DOUBLE PRECISION A( LDA, * ), B( LDB, * ), W( * ), WORK( * ),
- $ Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE
- PARAMETER ( ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
- CHARACTER TRANS
- INTEGER LWKMIN, LWKOPT, NB
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL LSAME, ILAENV
- * ..
- * .. External Subroutines ..
- EXTERNAL DPOTRF, DSYEVX, DSYGST, DTRMM, DTRSM, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- UPPER = LSAME( UPLO, 'U' )
- WANTZ = LSAME( JOBZ, 'V' )
- ALLEIG = LSAME( RANGE, 'A' )
- VALEIG = LSAME( RANGE, 'V' )
- INDEIG = LSAME( RANGE, 'I' )
- LQUERY = ( LWORK.EQ.-1 )
- *
- INFO = 0
- IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
- INFO = -1
- ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -2
- ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
- INFO = -3
- ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
- INFO = -4
- ELSE IF( N.LT.0 ) THEN
- INFO = -5
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -7
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -9
- ELSE
- IF( VALEIG ) THEN
- IF( N.GT.0 .AND. VU.LE.VL )
- $ INFO = -11
- ELSE IF( INDEIG ) THEN
- IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
- INFO = -12
- ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
- INFO = -13
- END IF
- END IF
- END IF
- IF (INFO.EQ.0) THEN
- IF (LDZ.LT.1 .OR. (WANTZ .AND. LDZ.LT.N)) THEN
- INFO = -18
- END IF
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- LWKMIN = MAX( 1, 8*N )
- NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
- LWKOPT = MAX( LWKMIN, ( NB + 3 )*N )
- WORK( 1 ) = LWKOPT
- *
- IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
- INFO = -20
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DSYGVX', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- M = 0
- IF( N.EQ.0 ) THEN
- RETURN
- END IF
- *
- * Form a Cholesky factorization of B.
- *
- CALL DPOTRF( UPLO, N, B, LDB, INFO )
- IF( INFO.NE.0 ) THEN
- INFO = N + INFO
- RETURN
- END IF
- *
- * Transform problem to standard eigenvalue problem and solve.
- *
- CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
- CALL DSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
- $ M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL, INFO )
- *
- IF( WANTZ ) THEN
- *
- * Backtransform eigenvectors to the original problem.
- *
- IF( INFO.GT.0 )
- $ M = INFO - 1
- IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
- *
- * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
- * backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
- *
- IF( UPPER ) THEN
- TRANS = 'N'
- ELSE
- TRANS = 'T'
- END IF
- *
- CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, M, ONE, B,
- $ LDB, Z, LDZ )
- *
- ELSE IF( ITYPE.EQ.3 ) THEN
- *
- * For B*A*x=(lambda)*x;
- * backtransform eigenvectors: x = L*y or U**T*y
- *
- IF( UPPER ) THEN
- TRANS = 'T'
- ELSE
- TRANS = 'N'
- END IF
- *
- CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, M, ONE, B,
- $ LDB, Z, LDZ )
- END IF
- END IF
- *
- * Set WORK(1) to optimal workspace size.
- *
- WORK( 1 ) = LWKOPT
- *
- RETURN
- *
- * End of DSYGVX
- *
- END
|