|
- *> \brief <b> DSYCON_ROOK </b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DSYCON_ROOK + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsycon_rook.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsycon_rook.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsycon_rook.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DSYCON_ROOK( UPLO, N, A, LDA, IPIV, ANORM, RCOND,
- * WORK, IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, N
- * DOUBLE PRECISION ANORM, RCOND
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * ), IWORK( * )
- * DOUBLE PRECISION A( LDA, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DSYCON_ROOK estimates the reciprocal of the condition number (in the
- *> 1-norm) of a real symmetric matrix A using the factorization
- *> A = U*D*U**T or A = L*D*L**T computed by DSYTRF_ROOK.
- *>
- *> An estimate is obtained for norm(inv(A)), and the reciprocal of the
- *> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the details of the factorization are stored
- *> as an upper or lower triangular matrix.
- *> = 'U': Upper triangular, form is A = U*D*U**T;
- *> = 'L': Lower triangular, form is A = L*D*L**T.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> The block diagonal matrix D and the multipliers used to
- *> obtain the factor U or L as computed by DSYTRF_ROOK.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges and the block structure of D
- *> as determined by DSYTRF_ROOK.
- *> \endverbatim
- *>
- *> \param[in] ANORM
- *> \verbatim
- *> ANORM is DOUBLE PRECISION
- *> The 1-norm of the original matrix A.
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is DOUBLE PRECISION
- *> The reciprocal of the condition number of the matrix A,
- *> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
- *> estimate of the 1-norm of inv(A) computed in this routine.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date April 2012
- *
- *> \ingroup doubleSYcomputational
- *
- *> \par Contributors:
- * ==================
- *> \verbatim
- *>
- *> April 2012, Igor Kozachenko,
- *> Computer Science Division,
- *> University of California, Berkeley
- *>
- *> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
- *> School of Mathematics,
- *> University of Manchester
- *>
- *> \endverbatim
- *
- * =====================================================================
- SUBROUTINE DSYCON_ROOK( UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK,
- $ IWORK, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * April 2012
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, N
- DOUBLE PRECISION ANORM, RCOND
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * ), IWORK( * )
- DOUBLE PRECISION A( LDA, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER I, KASE
- DOUBLE PRECISION AINVNM
- * ..
- * .. Local Arrays ..
- INTEGER ISAVE( 3 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL DLACN2, DSYTRS_ROOK, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- ELSE IF( ANORM.LT.ZERO ) THEN
- INFO = -6
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DSYCON_ROOK', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- RCOND = ZERO
- IF( N.EQ.0 ) THEN
- RCOND = ONE
- RETURN
- ELSE IF( ANORM.LE.ZERO ) THEN
- RETURN
- END IF
- *
- * Check that the diagonal matrix D is nonsingular.
- *
- IF( UPPER ) THEN
- *
- * Upper triangular storage: examine D from bottom to top
- *
- DO 10 I = N, 1, -1
- IF( IPIV( I ).GT.0 .AND. A( I, I ).EQ.ZERO )
- $ RETURN
- 10 CONTINUE
- ELSE
- *
- * Lower triangular storage: examine D from top to bottom.
- *
- DO 20 I = 1, N
- IF( IPIV( I ).GT.0 .AND. A( I, I ).EQ.ZERO )
- $ RETURN
- 20 CONTINUE
- END IF
- *
- * Estimate the 1-norm of the inverse.
- *
- KASE = 0
- 30 CONTINUE
- CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
- IF( KASE.NE.0 ) THEN
- *
- * Multiply by inv(L*D*L**T) or inv(U*D*U**T).
- *
- CALL DSYTRS_ROOK( UPLO, N, 1, A, LDA, IPIV, WORK, N, INFO )
- GO TO 30
- END IF
- *
- * Compute the estimate of the reciprocal condition number.
- *
- IF( AINVNM.NE.ZERO )
- $ RCOND = ( ONE / AINVNM ) / ANORM
- *
- RETURN
- *
- * End of DSYCON_ROOK
- *
- END
|