|
- *> \brief \b DSPGVD
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DSPGVD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspgvd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspgvd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspgvd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
- * LWORK, IWORK, LIWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, UPLO
- * INTEGER INFO, ITYPE, LDZ, LIWORK, LWORK, N
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * DOUBLE PRECISION AP( * ), BP( * ), W( * ), WORK( * ),
- * $ Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DSPGVD computes all the eigenvalues, and optionally, the eigenvectors
- *> of a real generalized symmetric-definite eigenproblem, of the form
- *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
- *> B are assumed to be symmetric, stored in packed format, and B is also
- *> positive definite.
- *> If eigenvectors are desired, it uses a divide and conquer algorithm.
- *>
- *> The divide and conquer algorithm makes very mild assumptions about
- *> floating point arithmetic. It will work on machines with a guard
- *> digit in add/subtract, or on those binary machines without guard
- *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
- *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
- *> without guard digits, but we know of none.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] ITYPE
- *> \verbatim
- *> ITYPE is INTEGER
- *> Specifies the problem type to be solved:
- *> = 1: A*x = (lambda)*B*x
- *> = 2: A*B*x = (lambda)*x
- *> = 3: B*A*x = (lambda)*x
- *> \endverbatim
- *>
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangles of A and B are stored;
- *> = 'L': Lower triangles of A and B are stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AP
- *> \verbatim
- *> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
- *> On entry, the upper or lower triangle of the symmetric matrix
- *> A, packed columnwise in a linear array. The j-th column of A
- *> is stored in the array AP as follows:
- *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
- *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
- *>
- *> On exit, the contents of AP are destroyed.
- *> \endverbatim
- *>
- *> \param[in,out] BP
- *> \verbatim
- *> BP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
- *> On entry, the upper or lower triangle of the symmetric matrix
- *> B, packed columnwise in a linear array. The j-th column of B
- *> is stored in the array BP as follows:
- *> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
- *> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
- *>
- *> On exit, the triangular factor U or L from the Cholesky
- *> factorization B = U**T*U or B = L*L**T, in the same storage
- *> format as B.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is DOUBLE PRECISION array, dimension (N)
- *> If INFO = 0, the eigenvalues in ascending order.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is DOUBLE PRECISION array, dimension (LDZ, N)
- *> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
- *> eigenvectors. The eigenvectors are normalized as follows:
- *> if ITYPE = 1 or 2, Z**T*B*Z = I;
- *> if ITYPE = 3, Z**T*inv(B)*Z = I.
- *> If JOBZ = 'N', then Z is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1, and if
- *> JOBZ = 'V', LDZ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the required LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> If N <= 1, LWORK >= 1.
- *> If JOBZ = 'N' and N > 1, LWORK >= 2*N.
- *> If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the required sizes of the WORK and IWORK
- *> arrays, returns these values as the first entries of the WORK
- *> and IWORK arrays, and no error message related to LWORK or
- *> LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
- *> On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
- *> \endverbatim
- *>
- *> \param[in] LIWORK
- *> \verbatim
- *> LIWORK is INTEGER
- *> The dimension of the array IWORK.
- *> If JOBZ = 'N' or N <= 1, LIWORK >= 1.
- *> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
- *>
- *> If LIWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the required sizes of the WORK and
- *> IWORK arrays, returns these values as the first entries of
- *> the WORK and IWORK arrays, and no error message related to
- *> LWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: DPPTRF or DSPEVD returned an error code:
- *> <= N: if INFO = i, DSPEVD failed to converge;
- *> i off-diagonal elements of an intermediate
- *> tridiagonal form did not converge to zero;
- *> > N: if INFO = N + i, for 1 <= i <= N, then the leading
- *> minor of order i of B is not positive definite.
- *> The factorization of B could not be completed and
- *> no eigenvalues or eigenvectors were computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup doubleOTHEReigen
- *
- *> \par Contributors:
- * ==================
- *>
- *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
- *
- * =====================================================================
- SUBROUTINE DSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
- $ LWORK, IWORK, LIWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, UPLO
- INTEGER INFO, ITYPE, LDZ, LIWORK, LWORK, N
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- DOUBLE PRECISION AP( * ), BP( * ), W( * ), WORK( * ),
- $ Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL LQUERY, UPPER, WANTZ
- CHARACTER TRANS
- INTEGER J, LIWMIN, LWMIN, NEIG
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL DPPTRF, DSPEVD, DSPGST, DTPMV, DTPSV, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- WANTZ = LSAME( JOBZ, 'V' )
- UPPER = LSAME( UPLO, 'U' )
- LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
- *
- INFO = 0
- IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
- INFO = -1
- ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -2
- ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
- INFO = -9
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- IF( N.LE.1 ) THEN
- LIWMIN = 1
- LWMIN = 1
- ELSE
- IF( WANTZ ) THEN
- LIWMIN = 3 + 5*N
- LWMIN = 1 + 6*N + 2*N**2
- ELSE
- LIWMIN = 1
- LWMIN = 2*N
- END IF
- END IF
- WORK( 1 ) = LWMIN
- IWORK( 1 ) = LIWMIN
- IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -11
- ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -13
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DSPGVD', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Form a Cholesky factorization of BP.
- *
- CALL DPPTRF( UPLO, N, BP, INFO )
- IF( INFO.NE.0 ) THEN
- INFO = N + INFO
- RETURN
- END IF
- *
- * Transform problem to standard eigenvalue problem and solve.
- *
- CALL DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
- CALL DSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK,
- $ LIWORK, INFO )
- LWMIN = MAX( DBLE( LWMIN ), DBLE( WORK( 1 ) ) )
- LIWMIN = MAX( DBLE( LIWMIN ), DBLE( IWORK( 1 ) ) )
- *
- IF( WANTZ ) THEN
- *
- * Backtransform eigenvectors to the original problem.
- *
- NEIG = N
- IF( INFO.GT.0 )
- $ NEIG = INFO - 1
- IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
- *
- * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
- * backtransform eigenvectors: x = inv(L)**T *y or inv(U)*y
- *
- IF( UPPER ) THEN
- TRANS = 'N'
- ELSE
- TRANS = 'T'
- END IF
- *
- DO 10 J = 1, NEIG
- CALL DTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
- $ 1 )
- 10 CONTINUE
- *
- ELSE IF( ITYPE.EQ.3 ) THEN
- *
- * For B*A*x=(lambda)*x;
- * backtransform eigenvectors: x = L*y or U**T *y
- *
- IF( UPPER ) THEN
- TRANS = 'T'
- ELSE
- TRANS = 'N'
- END IF
- *
- DO 20 J = 1, NEIG
- CALL DTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
- $ 1 )
- 20 CONTINUE
- END IF
- END IF
- *
- WORK( 1 ) = LWMIN
- IWORK( 1 ) = LIWMIN
- *
- RETURN
- *
- * End of DSPGVD
- *
- END
|