|
- *> \brief \b DPPTRS
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DPPTRS + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpptrs.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpptrs.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpptrs.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DPPTRS( UPLO, N, NRHS, AP, B, LDB, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION AP( * ), B( LDB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DPPTRS solves a system of linear equations A*X = B with a symmetric
- *> positive definite matrix A in packed storage using the Cholesky
- *> factorization A = U**T*U or A = L*L**T computed by DPPTRF.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] AP
- *> \verbatim
- *> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
- *> The triangular factor U or L from the Cholesky factorization
- *> A = U**T*U or A = L*L**T, packed columnwise in a linear
- *> array. The j-th column of U or L is stored in the array AP
- *> as follows:
- *> if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
- *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
- *> On entry, the right hand side matrix B.
- *> On exit, the solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup doubleOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE DPPTRS( UPLO, N, NRHS, AP, B, LDB, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION AP( * ), B( LDB, * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER I
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL DTPSV, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -6
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DPPTRS', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 .OR. NRHS.EQ.0 )
- $ RETURN
- *
- IF( UPPER ) THEN
- *
- * Solve A*X = B where A = U**T * U.
- *
- DO 10 I = 1, NRHS
- *
- * Solve U**T *X = B, overwriting B with X.
- *
- CALL DTPSV( 'Upper', 'Transpose', 'Non-unit', N, AP,
- $ B( 1, I ), 1 )
- *
- * Solve U*X = B, overwriting B with X.
- *
- CALL DTPSV( 'Upper', 'No transpose', 'Non-unit', N, AP,
- $ B( 1, I ), 1 )
- 10 CONTINUE
- ELSE
- *
- * Solve A*X = B where A = L * L**T.
- *
- DO 20 I = 1, NRHS
- *
- * Solve L*Y = B, overwriting B with X.
- *
- CALL DTPSV( 'Lower', 'No transpose', 'Non-unit', N, AP,
- $ B( 1, I ), 1 )
- *
- * Solve L**T *X = Y, overwriting B with X.
- *
- CALL DTPSV( 'Lower', 'Transpose', 'Non-unit', N, AP,
- $ B( 1, I ), 1 )
- 20 CONTINUE
- END IF
- *
- RETURN
- *
- * End of DPPTRS
- *
- END
|