|
- *> \brief <b> DPPSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DPPSVX + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dppsvx.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dppsvx.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dppsvx.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DPPSVX( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB,
- * X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER EQUED, FACT, UPLO
- * INTEGER INFO, LDB, LDX, N, NRHS
- * DOUBLE PRECISION RCOND
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * DOUBLE PRECISION AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
- * $ FERR( * ), S( * ), WORK( * ), X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DPPSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
- *> compute the solution to a real system of linear equations
- *> A * X = B,
- *> where A is an N-by-N symmetric positive definite matrix stored in
- *> packed format and X and B are N-by-NRHS matrices.
- *>
- *> Error bounds on the solution and a condition estimate are also
- *> provided.
- *> \endverbatim
- *
- *> \par Description:
- * =================
- *>
- *> \verbatim
- *>
- *> The following steps are performed:
- *>
- *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
- *> the system:
- *> diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
- *> Whether or not the system will be equilibrated depends on the
- *> scaling of the matrix A, but if equilibration is used, A is
- *> overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
- *>
- *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
- *> factor the matrix A (after equilibration if FACT = 'E') as
- *> A = U**T* U, if UPLO = 'U', or
- *> A = L * L**T, if UPLO = 'L',
- *> where U is an upper triangular matrix and L is a lower triangular
- *> matrix.
- *>
- *> 3. If the leading i-by-i principal minor is not positive definite,
- *> then the routine returns with INFO = i. Otherwise, the factored
- *> form of A is used to estimate the condition number of the matrix
- *> A. If the reciprocal of the condition number is less than machine
- *> precision, INFO = N+1 is returned as a warning, but the routine
- *> still goes on to solve for X and compute error bounds as
- *> described below.
- *>
- *> 4. The system of equations is solved for X using the factored form
- *> of A.
- *>
- *> 5. Iterative refinement is applied to improve the computed solution
- *> matrix and calculate error bounds and backward error estimates
- *> for it.
- *>
- *> 6. If equilibration was used, the matrix X is premultiplied by
- *> diag(S) so that it solves the original system before
- *> equilibration.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] FACT
- *> \verbatim
- *> FACT is CHARACTER*1
- *> Specifies whether or not the factored form of the matrix A is
- *> supplied on entry, and if not, whether the matrix A should be
- *> equilibrated before it is factored.
- *> = 'F': On entry, AFP contains the factored form of A.
- *> If EQUED = 'Y', the matrix A has been equilibrated
- *> with scaling factors given by S. AP and AFP will not
- *> be modified.
- *> = 'N': The matrix A will be copied to AFP and factored.
- *> = 'E': The matrix A will be equilibrated if necessary, then
- *> copied to AFP and factored.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of linear equations, i.e., the order of the
- *> matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices B and X. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AP
- *> \verbatim
- *> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
- *> On entry, the upper or lower triangle of the symmetric matrix
- *> A, packed columnwise in a linear array, except if FACT = 'F'
- *> and EQUED = 'Y', then A must contain the equilibrated matrix
- *> diag(S)*A*diag(S). The j-th column of A is stored in the
- *> array AP as follows:
- *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
- *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
- *> See below for further details. A is not modified if
- *> FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
- *>
- *> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
- *> diag(S)*A*diag(S).
- *> \endverbatim
- *>
- *> \param[in,out] AFP
- *> \verbatim
- *> AFP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
- *> If FACT = 'F', then AFP is an input argument and on entry
- *> contains the triangular factor U or L from the Cholesky
- *> factorization A = U**T*U or A = L*L**T, in the same storage
- *> format as A. If EQUED .ne. 'N', then AFP is the factored
- *> form of the equilibrated matrix A.
- *>
- *> If FACT = 'N', then AFP is an output argument and on exit
- *> returns the triangular factor U or L from the Cholesky
- *> factorization A = U**T * U or A = L * L**T of the original
- *> matrix A.
- *>
- *> If FACT = 'E', then AFP is an output argument and on exit
- *> returns the triangular factor U or L from the Cholesky
- *> factorization A = U**T * U or A = L * L**T of the equilibrated
- *> matrix A (see the description of AP for the form of the
- *> equilibrated matrix).
- *> \endverbatim
- *>
- *> \param[in,out] EQUED
- *> \verbatim
- *> EQUED is CHARACTER*1
- *> Specifies the form of equilibration that was done.
- *> = 'N': No equilibration (always true if FACT = 'N').
- *> = 'Y': Equilibration was done, i.e., A has been replaced by
- *> diag(S) * A * diag(S).
- *> EQUED is an input argument if FACT = 'F'; otherwise, it is an
- *> output argument.
- *> \endverbatim
- *>
- *> \param[in,out] S
- *> \verbatim
- *> S is DOUBLE PRECISION array, dimension (N)
- *> The scale factors for A; not accessed if EQUED = 'N'. S is
- *> an input argument if FACT = 'F'; otherwise, S is an output
- *> argument. If FACT = 'F' and EQUED = 'Y', each element of S
- *> must be positive.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
- *> On entry, the N-by-NRHS right hand side matrix B.
- *> On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
- *> B is overwritten by diag(S) * B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
- *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
- *> the original system of equations. Note that if EQUED = 'Y',
- *> A and B are modified on exit, and the solution to the
- *> equilibrated system is inv(diag(S))*X.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is DOUBLE PRECISION
- *> The estimate of the reciprocal condition number of the matrix
- *> A after equilibration (if done). If RCOND is less than the
- *> machine precision (in particular, if RCOND = 0), the matrix
- *> is singular to working precision. This condition is
- *> indicated by a return code of INFO > 0.
- *> \endverbatim
- *>
- *> \param[out] FERR
- *> \verbatim
- *> FERR is DOUBLE PRECISION array, dimension (NRHS)
- *> The estimated forward error bound for each solution vector
- *> X(j) (the j-th column of the solution matrix X).
- *> If XTRUE is the true solution corresponding to X(j), FERR(j)
- *> is an estimated upper bound for the magnitude of the largest
- *> element in (X(j) - XTRUE) divided by the magnitude of the
- *> largest element in X(j). The estimate is as reliable as
- *> the estimate for RCOND, and is almost always a slight
- *> overestimate of the true error.
- *> \endverbatim
- *>
- *> \param[out] BERR
- *> \verbatim
- *> BERR is DOUBLE PRECISION array, dimension (NRHS)
- *> The componentwise relative backward error of each solution
- *> vector X(j) (i.e., the smallest relative change in
- *> any element of A or B that makes X(j) an exact solution).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (3*N)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, and i is
- *> <= N: the leading minor of order i of A is
- *> not positive definite, so the factorization
- *> could not be completed, and the solution has not
- *> been computed. RCOND = 0 is returned.
- *> = N+1: U is nonsingular, but RCOND is less than machine
- *> precision, meaning that the matrix is singular
- *> to working precision. Nevertheless, the
- *> solution and error bounds are computed because
- *> there are a number of situations where the
- *> computed solution can be more accurate than the
- *> value of RCOND would suggest.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date April 2012
- *
- *> \ingroup doubleOTHERsolve
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The packed storage scheme is illustrated by the following example
- *> when N = 4, UPLO = 'U':
- *>
- *> Two-dimensional storage of the symmetric matrix A:
- *>
- *> a11 a12 a13 a14
- *> a22 a23 a24
- *> a33 a34 (aij = conjg(aji))
- *> a44
- *>
- *> Packed storage of the upper triangle of A:
- *>
- *> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE DPPSVX( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB,
- $ X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.7.1) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * April 2012
- *
- * .. Scalar Arguments ..
- CHARACTER EQUED, FACT, UPLO
- INTEGER INFO, LDB, LDX, N, NRHS
- DOUBLE PRECISION RCOND
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- DOUBLE PRECISION AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
- $ FERR( * ), S( * ), WORK( * ), X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL EQUIL, NOFACT, RCEQU
- INTEGER I, INFEQU, J
- DOUBLE PRECISION AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, DLANSP
- EXTERNAL LSAME, DLAMCH, DLANSP
- * ..
- * .. External Subroutines ..
- EXTERNAL DCOPY, DLACPY, DLAQSP, DPPCON, DPPEQU, DPPRFS,
- $ DPPTRF, DPPTRS, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- NOFACT = LSAME( FACT, 'N' )
- EQUIL = LSAME( FACT, 'E' )
- IF( NOFACT .OR. EQUIL ) THEN
- EQUED = 'N'
- RCEQU = .FALSE.
- ELSE
- RCEQU = LSAME( EQUED, 'Y' )
- SMLNUM = DLAMCH( 'Safe minimum' )
- BIGNUM = ONE / SMLNUM
- END IF
- *
- * Test the input parameters.
- *
- IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
- $ THEN
- INFO = -1
- ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
- $ THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -4
- ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
- $ ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
- INFO = -7
- ELSE
- IF( RCEQU ) THEN
- SMIN = BIGNUM
- SMAX = ZERO
- DO 10 J = 1, N
- SMIN = MIN( SMIN, S( J ) )
- SMAX = MAX( SMAX, S( J ) )
- 10 CONTINUE
- IF( SMIN.LE.ZERO ) THEN
- INFO = -8
- ELSE IF( N.GT.0 ) THEN
- SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
- ELSE
- SCOND = ONE
- END IF
- END IF
- IF( INFO.EQ.0 ) THEN
- IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -10
- ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
- INFO = -12
- END IF
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DPPSVX', -INFO )
- RETURN
- END IF
- *
- IF( EQUIL ) THEN
- *
- * Compute row and column scalings to equilibrate the matrix A.
- *
- CALL DPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFEQU )
- IF( INFEQU.EQ.0 ) THEN
- *
- * Equilibrate the matrix.
- *
- CALL DLAQSP( UPLO, N, AP, S, SCOND, AMAX, EQUED )
- RCEQU = LSAME( EQUED, 'Y' )
- END IF
- END IF
- *
- * Scale the right-hand side.
- *
- IF( RCEQU ) THEN
- DO 30 J = 1, NRHS
- DO 20 I = 1, N
- B( I, J ) = S( I )*B( I, J )
- 20 CONTINUE
- 30 CONTINUE
- END IF
- *
- IF( NOFACT .OR. EQUIL ) THEN
- *
- * Compute the Cholesky factorization A = U**T * U or A = L * L**T.
- *
- CALL DCOPY( N*( N+1 ) / 2, AP, 1, AFP, 1 )
- CALL DPPTRF( UPLO, N, AFP, INFO )
- *
- * Return if INFO is non-zero.
- *
- IF( INFO.GT.0 )THEN
- RCOND = ZERO
- RETURN
- END IF
- END IF
- *
- * Compute the norm of the matrix A.
- *
- ANORM = DLANSP( 'I', UPLO, N, AP, WORK )
- *
- * Compute the reciprocal of the condition number of A.
- *
- CALL DPPCON( UPLO, N, AFP, ANORM, RCOND, WORK, IWORK, INFO )
- *
- * Compute the solution matrix X.
- *
- CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
- CALL DPPTRS( UPLO, N, NRHS, AFP, X, LDX, INFO )
- *
- * Use iterative refinement to improve the computed solution and
- * compute error bounds and backward error estimates for it.
- *
- CALL DPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR,
- $ WORK, IWORK, INFO )
- *
- * Transform the solution matrix X to a solution of the original
- * system.
- *
- IF( RCEQU ) THEN
- DO 50 J = 1, NRHS
- DO 40 I = 1, N
- X( I, J ) = S( I )*X( I, J )
- 40 CONTINUE
- 50 CONTINUE
- DO 60 J = 1, NRHS
- FERR( J ) = FERR( J ) / SCOND
- 60 CONTINUE
- END IF
- *
- * Set INFO = N+1 if the matrix is singular to working precision.
- *
- IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
- $ INFO = N + 1
- *
- RETURN
- *
- * End of DPPSVX
- *
- END
|