|
- *> \brief \b DORMRZ
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DORMRZ + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dormrz.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dormrz.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dormrz.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DORMRZ( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
- * WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER SIDE, TRANS
- * INTEGER INFO, K, L, LDA, LDC, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DORMRZ overwrites the general real M-by-N matrix C with
- *>
- *> SIDE = 'L' SIDE = 'R'
- *> TRANS = 'N': Q * C C * Q
- *> TRANS = 'T': Q**T * C C * Q**T
- *>
- *> where Q is a real orthogonal matrix defined as the product of k
- *> elementary reflectors
- *>
- *> Q = H(1) H(2) . . . H(k)
- *>
- *> as returned by DTZRZF. Q is of order M if SIDE = 'L' and of order N
- *> if SIDE = 'R'.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> = 'L': apply Q or Q**T from the Left;
- *> = 'R': apply Q or Q**T from the Right.
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> = 'N': No transpose, apply Q;
- *> = 'T': Transpose, apply Q**T.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix C. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix C. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The number of elementary reflectors whose product defines
- *> the matrix Q.
- *> If SIDE = 'L', M >= K >= 0;
- *> if SIDE = 'R', N >= K >= 0.
- *> \endverbatim
- *>
- *> \param[in] L
- *> \verbatim
- *> L is INTEGER
- *> The number of columns of the matrix A containing
- *> the meaningful part of the Householder reflectors.
- *> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension
- *> (LDA,M) if SIDE = 'L',
- *> (LDA,N) if SIDE = 'R'
- *> The i-th row must contain the vector which defines the
- *> elementary reflector H(i), for i = 1,2,...,k, as returned by
- *> DTZRZF in the last k rows of its array argument A.
- *> A is modified by the routine but restored on exit.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,K).
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is DOUBLE PRECISION array, dimension (K)
- *> TAU(i) must contain the scalar factor of the elementary
- *> reflector H(i), as returned by DTZRZF.
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is DOUBLE PRECISION array, dimension (LDC,N)
- *> On entry, the M-by-N matrix C.
- *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> If SIDE = 'L', LWORK >= max(1,N);
- *> if SIDE = 'R', LWORK >= max(1,M).
- *> For good performance, LWORK should generally be larger.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup doubleOTHERcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE DORMRZ( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
- $ WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER SIDE, TRANS
- INTEGER INFO, K, L, LDA, LDC, LWORK, M, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- INTEGER NBMAX, LDT, TSIZE
- PARAMETER ( NBMAX = 64, LDT = NBMAX+1,
- $ TSIZE = LDT*NBMAX )
- * ..
- * .. Local Scalars ..
- LOGICAL LEFT, LQUERY, NOTRAN
- CHARACTER TRANST
- INTEGER I, I1, I2, I3, IB, IC, IINFO, IWT, JA, JC,
- $ LDWORK, LWKOPT, MI, NB, NBMIN, NI, NQ, NW
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL LSAME, ILAENV
- * ..
- * .. External Subroutines ..
- EXTERNAL DLARZB, DLARZT, DORMR3, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- LEFT = LSAME( SIDE, 'L' )
- NOTRAN = LSAME( TRANS, 'N' )
- LQUERY = ( LWORK.EQ.-1 )
- *
- * NQ is the order of Q and NW is the minimum dimension of WORK
- *
- IF( LEFT ) THEN
- NQ = M
- NW = MAX( 1, N )
- ELSE
- NQ = N
- NW = MAX( 1, M )
- END IF
- IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
- INFO = -2
- ELSE IF( M.LT.0 ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
- INFO = -5
- ELSE IF( L.LT.0 .OR. ( LEFT .AND. ( L.GT.M ) ) .OR.
- $ ( .NOT.LEFT .AND. ( L.GT.N ) ) ) THEN
- INFO = -6
- ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
- INFO = -8
- ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
- INFO = -11
- ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
- INFO = -13
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- *
- * Compute the workspace requirements
- *
- IF( M.EQ.0 .OR. N.EQ.0 ) THEN
- LWKOPT = 1
- ELSE
- NB = MIN( NBMAX, ILAENV( 1, 'DORMRQ', SIDE // TRANS, M, N,
- $ K, -1 ) )
- LWKOPT = NW*NB + TSIZE
- END IF
- WORK( 1 ) = LWKOPT
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DORMRZ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 ) THEN
- WORK( 1 ) = 1
- RETURN
- END IF
- *
- NBMIN = 2
- LDWORK = NW
- IF( NB.GT.1 .AND. NB.LT.K ) THEN
- IF( LWORK.LT.NW*NB+TSIZE ) THEN
- NB = (LWORK-TSIZE) / LDWORK
- NBMIN = MAX( 2, ILAENV( 2, 'DORMRQ', SIDE // TRANS, M, N, K,
- $ -1 ) )
- END IF
- END IF
- *
- IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
- *
- * Use unblocked code
- *
- CALL DORMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
- $ WORK, IINFO )
- ELSE
- *
- * Use blocked code
- *
- IWT = 1 + NW*NB
- IF( ( LEFT .AND. .NOT.NOTRAN ) .OR.
- $ ( .NOT.LEFT .AND. NOTRAN ) ) THEN
- I1 = 1
- I2 = K
- I3 = NB
- ELSE
- I1 = ( ( K-1 ) / NB )*NB + 1
- I2 = 1
- I3 = -NB
- END IF
- *
- IF( LEFT ) THEN
- NI = N
- JC = 1
- JA = M - L + 1
- ELSE
- MI = M
- IC = 1
- JA = N - L + 1
- END IF
- *
- IF( NOTRAN ) THEN
- TRANST = 'T'
- ELSE
- TRANST = 'N'
- END IF
- *
- DO 10 I = I1, I2, I3
- IB = MIN( NB, K-I+1 )
- *
- * Form the triangular factor of the block reflector
- * H = H(i+ib-1) . . . H(i+1) H(i)
- *
- CALL DLARZT( 'Backward', 'Rowwise', L, IB, A( I, JA ), LDA,
- $ TAU( I ), WORK( IWT ), LDT )
- *
- IF( LEFT ) THEN
- *
- * H or H**T is applied to C(i:m,1:n)
- *
- MI = M - I + 1
- IC = I
- ELSE
- *
- * H or H**T is applied to C(1:m,i:n)
- *
- NI = N - I + 1
- JC = I
- END IF
- *
- * Apply H or H**T
- *
- CALL DLARZB( SIDE, TRANST, 'Backward', 'Rowwise', MI, NI,
- $ IB, L, A( I, JA ), LDA, WORK( IWT ), LDT,
- $ C( IC, JC ), LDC, WORK, LDWORK )
- 10 CONTINUE
- *
- END IF
- *
- WORK( 1 ) = LWKOPT
- *
- RETURN
- *
- * End of DORMRZ
- *
- END
|